	山工業高等	専門学校	開講年度	受 令和05年度 (Z	2023年度)	授業科目	建築応用力学			
科目基礎						•				
科目番号		0125		科目区分 専門 / 選択						
授業形態		講義			単位の種別と単位					
開設学科		建築学科	¥			5				
開設期		前期			週時間数	2				
教科書/教	· 收材	寺本隆幸	幸, 建築構造の力等	ŽII,森北出版,2007	7					
担当教員		大和 征	 良							
到達目	標									
1. 骨組 2. 前項 3. 計算	解析や動的的 がどのようだ 結果を盲信し	解析の基本的な手順で数値 しないための	りな方法を説明でき 直計算されるか説 D基礎力を醸成する	きる。 明できる。 る。						
ルーブ	リック									
骨組解析や動的解析の基本的な方 法を説明できる。			理想的な到達 サイン 骨組解析や動 法を明確に説	 的解析の基本的な方	標準的な到達レベルの目安 骨組解析や動的解析の基本的な 法を説明できる。		未到達レベルの目安 骨組解析や動的解析の基本的な方 法を説明できない。			
前項がどのような手順で数値計算 されるか説明できる。				がどのような手順で数値計算 前項がどのような手るか明確に説明できる。 されるか説明できる			前項がどのような手順で数値計算 されるか説明できない。			
計算結果 力を醸成	を盲信しない する。	ハための基礎	楚 計算結果を盲 力を的確に身	果を盲信しないための基礎 計算結果を盲信しない 確に身につける。			計算結果を盲信しないための基礎 力が身につかない。			
学科の	到達目標項	頁目との 関	月 係							
学習・教 JABEE(/	育到達度目 A)	票 ④								
教育方法										
概要	ч .	骨組解析)や動的解析法(振動だ ニュータ利用が前提と	 	D 基礎理論を学ざ				
受業の進	 め方・方法	1. 授業	内容は講義を基本							
注意点		1. 今ま 処理, た	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー		コンクリート構造, 来るのが本科目の内		ラン。 D授業が,微分積分,線形代数,情報 。			
 授業のI	属性・履修		· · · ·	,						
	<u> アイブラーニ</u>		」 □ ICT 利用		□ 遠隔授業対応		□ 実務経験のある教員による授			
	7177 -					'	□ 大小性吸ぐののもれたによる」と			
授業計	由									
又未可し	<u> </u>	週	授業内容			 週ごとの到達目標	5			
		1週		<u> </u>						
		2週	たわみ角法の概括 固定法の概括	<u>'i</u>						
		3週		トラスの剛性マトリ	/ ₇ 7	掃出し法,変位,外力ベクトル,剛性マトリクス,の 理解				
		4週	梁の剛性マトリク			全所 全所				
	1stQ	5週	平面骨組の剛性			2次元中の座標変換、全体剛性マトリクス、部材応力の理解				
		6週	部材の弾塑性性	************************************	5					
		7週	保有水平耐力	Д		崩壊メカニズム、塑性解析法、骨組耐力、の理解				
前期		8週	中間試験			の				
		9週			-	1質点振動, 粘性減衰のある場合の振動方程式, 減衰数, 粘性減衰振動, 対数減衰率の理解				
		10週	自由振動における	 るエネルギー応答	-	エネルギーの釣り合い式, 非減衰の自由振動時のエネルギー応答, 減衰自由振動時のエネルギー応答の理解				
		11週	地震動を受けるな	場合の1質点系の応答	j	振動方程式, 共振曲線と共振, 地動を受ける場合のエネルギー応答の理解				
	2 15	12週	せん断型多質点	系の自由振動		質量マトリクス,固有値,固有ベクトル,の理解				
	2ndQ	13週	せん断型多質点		tth 重h		r 速度,刺激係数,モード合成,地震応答,の理			
		14週	弾塑性地震応答	性地震応答解析(1)		弾塑性地震応答解析(1)の例, 応答スペクトル (1), の理解				
		15週	弾塑性地震応答			弾塑性地震応答解 (2),の理解	型性地震応答解析(2)の例, 応答スペクトル 2), の理解			
		16週	定期試験	钥試験		これまでの範囲を理解する				
モデルコアカリキュラムの学			ン学習内容と到	・ 学習内容と到達目標						
<u>ニノ / / .</u> 分類		分野	学習内容	学習内容の到達目	 標		到達レベル 授業週			
ノハス		// 121	1, 11, 12,	断面二次モーメント、断面相乗モーメント、断面係数や断面二次 4 半径などの断面諸量を計算できる。						
			I	半径などの断面諸	量を計算できる。		'			
専門的能	力 盆野別の	の専し建築系	· · · · · · · · · · · · · · · · · · ·		応力とひずみの定義	らない。 後、力と変形の関	係を説明で 4			
厚門的能	カ 分野別の門工学	の専し建築系	系分野 構造	弾性状態における き、それらを計算 曲げモーメントに 関係を理解し、そ	応力とひずみの定義	芯力(引張、圧縮)	とひずみの 4			

		 	な力と荷重の関係、 分方程式を用い、剝 明でき、たわみやた	応力と変形の関係 6何学的境界条件と こわみ角を計算でき	を用いてはりのた 力学的境界条件に る。	わみの微 ついて説 4							
			不静定構造物の解え きる。	て説明で 4									
		Ų	ハずれかの方法(変 より、不静定構造物	位法(たわみ角法)、 加の支点反力、応力	固定モーメント流(図)を計算できる	はなど) に 4							
評価割合													
	試験	課題・レポート	相互評価	態度	ポートフォリオ	その他	合計						
総合評価割合	70	30	0	0	0	0	100						
基礎的能力	0	0	0	0	0	0	0						
専門的能力	70	30	0	0	0	0	100						
分野横断的能力	0	0	0	0	0	0	0						