Juli	 工業高等	車門	 学校		開講年度	平成30年度 (2	018年度)	授	業科目	 応力解析	 特論		
科目基礎			IA		XI'I TIYUN	1 13,000 1-156 (2		אנ ן	·/NIIH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i o biili		
						科目区分 専門 / 選		専門/選排					
授業形態			515 議					科日区分 単位の種別と単位数		学的 / 選択 学修単位: 2			
				専攻(機械工学コース)			対象学年	112 1123 2 1 123 3 12 1 12 1		<u> </u>	<u>-</u>		
開設期						週時間数	2						
教科書/教材 機械製図((1,24	年生で使用の								
担当教員		Ш	村 壮司										
到達目標	Ē												
2. 三次元	設計ができる CAD で記 を用いて応	計設	よび製図			検討ができること.							
ルーブリ	リック									_			
				理想的な到達レベルの目安			標準的な到達レベルの目安		未到達レベルの目安				
評価項目1				機構設計について正確に説明できる			機構設計について説明できる		きない	についてほと			
評価項目2				三次元 CADを用いて設計および製図を正確にできる			三次元 CADを用いて設計および製図をできる		図をほと	ADを用いてi んどできない	1		
評価項目3				応力解析をして理論値との比較検 討が正確に説明できる			応力解析をして理論値との比較検 討が説明できる			応力解析をして理論値との比較検 討がほとんど説明できない			
	達目標耳		との関	係									
	到達度目 、	票 ②											
JABEE (B) 教会さは													
教育方法	2 寺	I≞л	Ŀ≘⊥∔÷⟨₽□≡	±±÷ï≡л	الله الله الله الله الله الله الله الله	い高いはもにコフト		\+:+ <i>+</i> .	ERI LEVER	会店 レ社管	佐の記羊につ	ハナ学羽士	
概要		設る		白小設 	1○対対階で雨	適設計を行えるよう	ノに,心刀脛伽())刀法を 	当待し,埋記	畑但と計算	<u> </u>	いて子首り 	
授業の進め	か方・方法	一性	を検証	するレ	ねじ式ジャッポートを作成 イボートを作成 イトによる評	・ キの設計を行い, 3 なする. 価で行う.	三次元 CAD にて	製図し,	FEM によ	る応力解析	から,各自の	設計の妥当	
注意点			験は行			ボルカ解析をしたレブ	ポートとデータの	は出を	オスアレ				
		HX			可弁目のの		K 1 C) 00.	леш с	9 000.				
1文未 三 四	<u>"</u> 	週		松菜 件				油ブレ	の到達目標	1			
		1週		授業内容 コンピュータ援用による最適設計につい				+			とこついて理解	 ?できる	
		2週			i 単なモデルを例に、三次元 CAD ソフト AutodeskInventor)で設計し、FEM 解析を行う			自動車を例に解説された内容について理解できる 材料力学の問題について理論値と解析値の比較を行い FEMの有効性が理解できる					
		3週		例題に		├し, FEM 解析を行う.		材料力学の問題について理論値と解析値の比較を行い FEMの有効性が理解できる					
	1stQ	4週		例題について設計し,FEM 解析を行う 理論値と解析値を比較			ò.	材料力学の問題について理論値と解析値の比較を行 FEMの有効性が理解できる)比較を行い	
		5週		列題について設計し,FEM 解析を行う 理論値と解析値を比較			ò.	材料力学の問題について理論値と解析値の比較を行い FEMの有効性が理解できる				比較を行い	
		6週		三次元 CAD ソフトによる課題の設計				機構設計をしてから三次元 CADにて製図することで 計をしていく過程を理解できる				することで説	
		7週		三次元 CAD ソフトによる課題の設計				機構設計をしてから三次元 CADにて製図することで 計をしていく過程を理解できる			することで設		
前期		8週		三次元	元 CAD ソフトによる課題の設計			機構設計をしてから三次元 CADにて製図することで設計をしていく過程を理解できる					
	2ndQ	9週	9週 三次:		E CAD ソフト		機構設計をしてから三次元 CADにて製図することで計をしていく過程を理解できる			することで説			
		10週 三		三次元	E CAD ソフト		機構設計をしてから三次元 CADにて製図することで 計をしていく過程を理解できる			することで記			
		11认	11週 三		E CAD ソフト		機構設計をしてから三次元 CADにて製図すること 計をしていく過程を理解できる			することで記 			
		12週 F		FEM による課題の応力解析				設計した機構について組立図を作成して応力解析を行い、応力分布や変形等の結果から妥当性を検証して理解できる					
		13认	13週 FEN		EM による課題の応力解析			設計した機構について組立図を作成して応力解析を行い, 応力分布や変形等の結果から妥当性を検証して理解できる					
		14认	14週 FE		こよる課題の		設計した機構について組立図を作成して応力解析を行い, 応力分布や変形等の結果から妥当性を検証して理解できる						
		15认	15週 課題		パートの評価		設計した機構と応力解析による評価から妥当性を理 できる			当性を理解			
	-		5週										
モデルニ	<u></u>]アカリ=	キュ :	<u>ラム</u> の	学習に	内容と到達	目標							
					学習内容の到達目標	目標 到達レベン				到達レベル	授業週		
専門的能力	八野叫の声			分野	製図	歯車減速装置、手巻きウインチ、渦巻きポンプ、ねじジャッキな どを題材に、その主要部の設計および製図ができる。							
							1						
評価割合					l	C C/2 110 (C1)		· O 24 CD	3 CC 00		1	·	

総合評価割合	0	0	0	0	0	100	100
基礎的能力	0	0	0	0	0	0	0
専門的能力	0	0	0	0	0	100	100
分野横断的能力	0	0	0	0	0	0	0