群馬工業高等専門学校		開講年度	平成30年度 (2018年度)		授業科目	分析化学	
科目基礎情報							
科目番号	3K016			科目区分	専門 / 必	修	
授業形態	授業			単位の種別と単位数	数 履修単位	履修単位: 2	
開設学科	物質工学科			対象学年	3		
開設期	通年			週時間数	2	2	
教科書/教材	教科書:分析化学/黒田六郎・杉谷嘉則・渋川雅美/裳華房						
担当教員	藤重 昌生						
까누다죠							

|到達目標

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安	
評価項目1		教科書、参考資料等から参考となるべき部分を探し、到達目標に準 じる理解を示す。	教科書、参考資料等から参考となるべき部分を探し、到達目標の6割程度の理解に達しない。	
評価項目2				
評価項目3				

学科の到達目標項目との関係

教育方法等

物質の成分を定性的、定量的に分析する際に必要な知識を理解し、分析を行うための前処理法、分析方法を提案できる ことを目的とするが、化学反応の基礎となる部分については、説明後、演習問題を解きながら解説する。最後には、実 際の分析例を通じて理解する。 概要

授業の進め方・方法

到達目標達成のため、授業概要に沿って行う。 物質の成分を定性的、定量的に分析する際に必要な知識を理解し、分析を行うための前処理法、分析方法を提案できる でとなりまするが、化学反応の基礎となる部分については、説明後、演習問題を解きながら解説する。最後には、実 際の分析例を通じて理解する。

注意点

授業計画

		週	授業内容	週ごとの到達目標
前期		1週	分析化学の基礎 分析化学とは、物質量・単位、測定値と誤差・精度等	
		2週	定性分析 陽イオンと陰イオンの定性分析	
		3週	溶液内平衡 1 化学平衡とは 自由エネルギーと化学平衡、溶液組成 の表現	
	1stQ	4週	溶液内平衡 2 化学平衡の理論:理想気体と理想溶液の化学ポテンシャル、活量と活量係数、質量作用の法則	
		5週	溶液内平衡 3 電解質水溶液:イオンの水和、イオン活量	
		6週	溶液内平衡 4 酸塩基平衡:酸と塩基の概念	
		7週	溶液内平衡 5 pH、化学平衡計算	課題
		8週	前期中間試験	
		9週	溶液内平衡 6 強酸と強塩基、緩衝液	
		10週	溶液内平衡 7 錯生成平衡:金属錯体の構造、錯体の生成定数、錯生成平衡とpH	
	2ndQ	11週	試料の調製と重量分析 1 試料の分解、沈殿の構造	
		12週	試料の調製と重量分析 2 沈殿の性質、均質沈殿法、沈殿の熟成等	
		13週	容量分析 1 濃度、標準駅の調製	
		14週	容量分析 2 酸塩基滴定	

		_							
		15週	容量分析 3 沈殿滴定			課題			
		16週	定期試験(前期末試験)						
		1週	容量分析 4 酸化還元滴定						
		2週	容量分析 5 キレート滴定:滴定 定	試薬、滴定曲線、	EDTAによる滴				
		3週	溶媒抽出 1 溶媒抽出の基礎、金	属キレートの抽出	l				
	3rdQ	4週	溶媒抽出 2 溶媒抽出を利用した	定量分析、溶媒抽	出操作等				
		5週	電気化学的分析方法 電極、電位差分析法	· 1 等					
		6週	電気化学的分析方法 電気分解	2					
		7週	光を利用する分析方 光分析の基礎、吸光	法 1 光度法1、		課題			
		8週	後期中間試験						
松 押		9週	光を利用する分析方法 2 吸光光度法2、発光分光分析						
後期	1 4thQ 1	10週	クロマトグラフィー クロマトグラフィー フィー	1 の分類と基礎、ガ	iスクロマトグラ				
		11週	クロマトグラフィー 液体クロマトグラフ ー等	2 ィー、ペーパーク	'ロマトグラフィ				
		12週	機器分析 1 質量分析法、GC/MS等						
		13週	機器分析 2 Gc/MSの試料調製法	等					
		14週	機器分析 3 X線回折法、蛍光X線分析法、赤外線吸収法、紫外線吸 収分析法						
		15週	環境分析・無期個体 応用課題として分析 環境水または底泥中 土を例に構成元素や ついて検討する。	方法を検討 の特定成分の分析	方法を検討する 微量有害物質に	課題			
		16週	定期試験(後記期末	試験)					
評価割合	727777777777777777777777777777777777777								
	試験:80% 課題:20% 相互評価 態度				ポートフォリオ	その他	合計		
総合評価割合 0		0	0	0	0	0	0		
基礎的能力 0			0	0	0	0	0	0	
	専門的能力 0		0	0	0	0	0	0	
	分野横断的能力 0		0	0	0	0	0	0	