群馬	工業高等	専門学校	開講年度 令和04年度 (2	2022年度)	授業科目 角	解析力学			
科目基礎	情報								
科目番号 151				科目区分	専門 / 選択				
授業形態		授業		単位の種別と単位					
開設学科		環境工学	專 攻	対象学年	専2				
開設期					2				
教科書/教	<u></u> ★ オ		特に指定しない. 自作の問題集などを	週時間数 Teamsから配布する					
教付書/教/ 担当教員	[2]	宇治野秀							
	.	十四到 万	5%						
□正準形式 □Hamilto	agrange方和 の基本的な on-Jacobi方	枠組みを理 程式を用い	て,古典力学の典型的な問題を解くこと 解し,基本的な問題を取り扱うことが て,基本的な問題を解くことができる. を理解できる.	できる.					
ルーブレ	Jック								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			理想的な到達レベルの目安	標準的な到達レベ	 ルの目安	未到達レベルの目安			
Euler-Lagrange方程式を用いて ,古典力学の典型的な問題を解く ことができる.			Euler-Lagrange方程式を用いて	Euler-Lagrange方程式を用いて 、それほど難しくはない古典力学 の典型的な問題を解くことができ る。		Euler-Lagrange方程式を用いて ,古典力学のそれほど難しくはな い典型的な問題を解くことができ ない.			
正準形式の基本的な枠組みを理解 し,基本的な問題を取り扱うこと ができる.				正準形式の基本的 し,それほど難し な問題を取り扱う	くはない基本的	正準形式の基本的な枠組みを理解し、それほど難しくはない基本的な問題を取り扱うことができない・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
Hamilton-Jacobi方程式を用いて , 基本的な問題を解くことができ る.				Hamilton-Jacobi , それほど難しく 問題を解くことが	はない基本的な	Hamilton-Jacobi方程式を用いて それほど難しくはない基本的な 問題を解くことができる.			
古典力学と量子力学の対応関係を 理解できる.			古典力学と量子力学の対応関係を , 複数の観点から十分に理解でき る.	古典力学と量子力: 理解できる.	学の対応関係を	古典力学と量子力学の対応関係を 理解できない.			
学科の到	達目標項								
教育方法									
1. 続いてに			て運動方程式の形が変わるため、大変に煩わしい、その煩雑さを解消し、万能で一般的な処方箋を提供するe形式をまず解説し、Machが「思考の経済」と絶賛したその実用上の利点を様々な例題を通じて実感させるLagrange形式よりもさらに大きな変数変換の自由度を与えるHamilton形式について解説し、運動方程式の表現あるHamilton-Jacobi方程式を導く、量子力学の基礎方程式であるSchroedinger方程式が、古典極限でn-Jacobi方程式に帰着することを見ることで、量子力学が古典力学の拡張理論であることを理解する.						
に対する 注意点 法に関す 自習時間			行う準備学習】微積分を用いる基礎的な力学(例えば本校学科3年応用物理Iでカバーされるような),多変数関数ものも含む微積分(偏微分,重積分),線形代数(特に行列の対角化,2次形式の標準化),簡単な微分方程式の解る知識を前提としますから、事前に復習をしておくと良いでしょう、本科目は,講義時間30時間に加え、自学60時間が講義の前後に必要となります、具体的な学修内容は,教材として私が自作した問題集の自学自習です状況については2回のテストゼミで確認します。						
授業の属	性・履修	上の区分							
<u>授業の属性・履修上の区分</u> ☑ アクティブラーニング			☑ ICT 利用	□ 遠隔授業対応		□ 実務経験のある教員による授業			
	1//		שו וכו איזה			□ 大切性状ののも教育にある技术			
1425 27. = T 1. - 1									
授業計画	<u> </u>			1					
		週	授業内容		週ごとの到達目標				
前期	1stQ	1週	最小作用の原理とLagrangian	1 •	・一般化座標とLag ・Euler-Lagrange ・点変換とEuler-L 月できる.	grangianについて説明できる. :方程式について説明できる. .agrange方程式の不変性について説			
		2週	最小作用の原理とLagrangian	•	・自由粒子とLagra ・自由粒子のLagra こ解析ができる.	angianについて説明・計算できる. angianについて,平面極座標を用い			
		3週	L=K-U型のLagrangianを持つ系	7	・保存力とEuler-Lagrange方程式について説明・計算できる. ・2重振り子についてLagrangianを用いた解析ができる.				
		4週	L=K-U型のLagrangianを持つ系	•	・フーコーの振り子について説明・計算できる. ・電磁場中の荷電粒子のLagrangianについて説明・計 算できる.				
		5週	保存量と対称性	7	・循環座標について説明・計算できる. ・拘束条件とLagrange未定乗数法について説明・計算 できる. ・Lagrangianの不定性 ・ネーターの定理について説明できる. ・空間の一様性と運動量の保存について説明・計算で きる.				
		6週	正準形式		・正準方程式について説明できる。				
			_ , , , , _ ,		・最小作用の原理と正準方程式について説明できる。				
		7週	正準形式		・正準変換と母関数について説明・計算できる。				
		8週	Lagrange形式の総復習	-	・第5週までの内容についてのテストゼミ(模擬試験 +問題解説)				

		9週	正準形式			・調和振動子の正準 ・エネルギーに共行 説明できる.	・調和振動子の正準形式による取扱いができる. ・エネルギーに共役な正準変数としての時間について 説明できる.				
		10週	Hamilton-Jacobi方程式			・時間発展と正準 ・Hamilton-Jacob	・時間発展と正準変換について説明できる。 ・Hamilton-Jacobi方程式について説明できる。				
		11週	Hamilton-Jacobi方程式			・Hamilton-Jacob 般解について説明 ⁻	・Hamilton-Jacobi方程式の完全解と正準方程式の一般解について説明できる.				
	2ndQ	12週	Hamilton-Jacobi方程式				・Hamilton-Jacobi方程式を用いて力学の簡単な例題 を扱うことができる.				
		13週	量子力学の古典権	量子力学の古典極限			・Schroedinger方程式の古典極限について説明できる				
		14週	量子力学の古典極限			・量子力学における。 る.	・量子力学における最小作用の原理について説明できる.				
		15週	正準形式以降の総復習			・第6週以降の内容 +問題解説)	・第6週以降の内容についてのテストゼミ(模擬試験 +問題解説)				
		16週	定期試験								
評価割合											
		験	発表	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割	合 10	00	0	0	0	0	0	100			
基礎的能力) 60	0	0	0	0	0	0	60			
専門的能力	3 3	0	0	0	0	0	0	30			
分野横断的	能力 10	0	0	0	0	0	0	10			