	木更津工業高等専門学校		校開講年	度平原	成28年度 (2	2016年度)	授業科目	機械運動学		
科目基	礎情報									
4目番号	1	0018				科目区分	専門 / 必何	多		
受業形態 授業							拉数 履修単位:	修単位: 1		
開設学科 機械工学			学科	科			3			
親設期		後期					週時間数 2			
対書/教										
□当教員		歸山 智	計							
到達目	標									
2. 平面 3. カム	i機構の運動 ・摩擦伝動	が解析を知り が機構と歯車	、リンク機構の ⁵ 「の基本について	寺徴を説明 里解し、こ	できる。 これらに関する	りこれらに関する! 問題を解くことが [*] を解くことができ	できる.。	ことができる.		
レーブ	リック									
			理想的な到	理想的な到達レベルの目安			標準的な到達レベルの目安]安	
平価項目	11		どの運動学	自由度、速度、加速度、円運動な どの運動学の基礎と剛体の運動と 瞬間中心を理解できる。			単純な機構における瞬間中心を求められる。		瞬間中心の概念が理解できない。	
平価項目	12		機構の運動	機構の運動解析を理解し、リンク機構の特徴を説明できる。			リンク機構の運動を計算できる。		リンク機構の運動をイメージで ない。	
平価項目	13		カム・摩擦について理	カム・摩擦伝動機構と歯車の基礎 について理解し、説明できる。			・摩擦伝動機構と歯車の基礎 り、単純な機構の解析ができ		機構と歯車の基礎	
 学科の [:]	到達目標	項目との	 関係							
	程 2(2)									
数育方:	 法等									
既要		, その また目	運動がどのよう(的とする構造が?	こ伝達され 字易に創造	ていくかを知り できるように	り, それぞれの機 ^材 なることを目標とす	構や機械要素の工 する。	る.各要素がどのよ 学的意味と特徴を理	型解する. 	
	め方・方法	5 授業は	, 对話重視の講	鬼形式 で行	い、その都度	質習を行う. さら(こ,埋解を深める	ためのレポートを誤	₹9.	
意点										
受業計	<u> </u>	I	1,2,11, 1, 2					-		
		週	授業内容				週ごとの到達目標			
		1週 2週	機械運動の基礎				機械、機構及び機素の定義を説明できる。			
			機構の自由度				機構の自由度を説明することができる。 単純な機構の瞬間中心および瞬間中心軌跡を求めるこ			
		3週	瞬間中心				単純な機構の瞬间中心のよび瞬间中心乳跡を求めると とができる。			
	240	4週	瞬間中心				ケネディーの定理を説明できる。			
	3rdQ	5週	平面リンク機構の運動解析				ケネディーの定理	を説明できる。	心軌跡を求める。	
			平面リンク機構の運動解析					を説明できる。 の種類と特徴を説		
		6调	平面リンク機				単純なリンク機構 単純なリンク機構		明できる.	
		6週		構の運動解	豣		単純なリンク機構 単純なリンク機構 きる.	の種類と特徴を説 の種類と特徴の問題	明できる.	
		7週	平面リンク機	構の運動解	豣		単純なリンク機構 単純なリンク機構 きる. コリオリカを説明	の種類と特徴を説 の種類と特徴の問題	明できる.	
領		7週 8週	平面リンク機前期中間試験	構の運動角	豣		単純なリンク機構 単純なリンク機構 きる. コリオリカを説明 試験実施	の種類と特徴を説明の種類と特徴の問題できる。	明できる.	
		7週 8週 9週	平面リンク機 前期中間試験 中間試験の解	構の運動角	豣		単純なリンク機構 単純なリンク機構 きる。 コリオリカを説明 試験実施 中間試験の内容に	の種類と特徴を説 の種類と特徴の問題できる. ついて解説する.	明できる. 題を解くことが [*]	
 後期		7週 8週	平面リンク機前期中間試験	構の運動角	豣		単純なリンク機構 単純なリンク機構 きる。 コリオリカを説明 試験実施 中間試験の内容に 転がり接触を満た	の種類と特徴を説明の種類と特徴の問題できる。	明できる. 題を解くことが [*] る.	
炎期		7週 8週 9週 10週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置	構の運動角	豣		単純なリンク機構 単純なリンク機構 きる. コリオリカを説明 試験実施 中間試験の内容に 転がり接触を満た 摩擦を利用した単 を理解できる。	の種類と特徴を説明の種類と特徴の問題できる. 「ついて解説する.」 「ついて解説する.」 「な条件を説明でき	明できる. 関を解くことが る. それぞれの仕組る	
後期	4thQ	7週 8週 9週 10週 11週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置	構の運動角	豣		単純なリンク機構 単純なリンク機構 きる. コリオリカを説明 試験実施 中間試験の内容に 転がり接触を満た 摩擦を利用した単 を理解できる。 かみ合い率を説明	の種類と特徴を説明の種類と特徴の問題できる。 ついて解説する。 す条件を説明できる。 純な機構を知り、	明できる. 関を解くことが「 る。 それぞれの仕組る	
	4thQ	7週 8週 9週 10週 11週 12週 13週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置 歯車装置 歯車装置	構の運動角	豣		単純なリンク機構 単純なリンク機構 きる。 コリオリカを説明 試験実施 中間試験の内容に 転がり接触を満た 摩擦解できる。 かみ合を利用した単 できる。 カムの種類、カムできる。	の種類と特徴を説明できる. ついて解説する. す条件を説明できる. 神な機構を知り、	明できる. 関を解くことが る。 それぞれの仕組み その仕組みを理解	
炎期	4thQ	7週 8週 9週 10週 11週 12週 13週 14週 15週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置 歯車装置 歯車装置 カム装置 前期定期試験	講の運動所 講の運動所 説	豣		単純なリンク機構 単純なリンク機構 きる. コリオリカを説明 試験に 中間がりを利の内容に 摩擦擦を地した。 下を理解でをで変を かみを あるを利用した は かみを あった も で カム で カム で カム で は い た に は い た に い が り を の の の の の の の の の の の の の の の の の の	の種類と特徴を説明できる. ついて解説する. す条件を説明できな、 がな機構を知り、 はあることができる. 純な機構を知り、 はなのできる. 純な機構を知り、	明できる. 関を解くことが る. それぞれの仕組。 その仕組みを理解 カムの輪郭を作り	
		7週 8週 9週 10週 11週 12週 13週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置 歯車装置 歯車装置	講の運動所 講の運動所 説	豣		単純なリンク機構 単純なリンク機構 きる. コリオリカを説明 試験に 中間がりを利の内容に 摩擦擦を地した。 下を理解でをで変を かみを あるを利用した は かみを あった も で カム で カム で カム で は い た に は い た に い が り を の の の の の の の の の の の の の の の の の の	の種類と特徴を説にの種類と特徴の問題できる。 ついて解説する。 す条件を説明できる 純な機構を知り、 はることができる。	明できる. 関を解くことが る. それぞれの仕組。 その仕組みを理解 カムの輪郭を作り	
受期	合	7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置 歯車装置 歯車装置 カム装置 前期定期試験	講の運動所 講の運動所 説	军析 军析		単純なリンク機構 単純なリンク機構 単純なリンク機構 きる、オリカを説明 試験、関間がりを利力を説明 でを軽響を関係を発展を が、対して、 を変更を が、対して、 が、対して、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	の種類と特徴を説明できる。 ついて解説する。 す条件を説明できる。 対象件を説明できる。 対象性を説明できる。 対象性を説明できる。 対象できる。 にな機構を知り、 はなのできる。 にな機構を知り、 にないできる。	明できる. 題を解くことが [*] る. それぞれの仕組み その仕組みを理解 カムの輪郭を作り る.	
平価割	合 	7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置 歯車装置 歯車装置 カム装置 前期定期試験 前期定期試験	講の運動所 講の運動所 説	豣	態度	単純なリンク機構 単純なリンク機構 きる。コリオリカを説明 試験実験の内容に 転がりを利である。 摩理解のの内容に 摩理解のの内容に 摩理解のの内容に かみ合を利用した単 かみきる。 できるのる。 で試験実施 前期定期試験の内 ポートフォリオ	の種類と特徴を説明できる。 ついて解説する。 す条件を説明できる。 す条件を説明できる。 はな機構を知り、 はることができる。 純な機構を知り、 線図を説明でき、 なの他	明できる. 関を解くことが る. それぞれの仕組み その仕組みを理解 カムの輪郭を作属 る.	
	合調合	7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	平面リンク機 前期中間試験 中間試験の解 摩擦伝動装置 摩擦伝動装置 歯車装置 歯車装置 カム装置 前期定期試験	講の運動所 講の運動所 説	军析 军析		単純なリンク機構 単純なリンク機構 単純なリンク機構 きる、オリカを説明 試験、関間がりを利力を説明 でを軽響を関係を発展を が、対して、 を変更を が、対して、 が、対して、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	の種類と特徴を説明できる。 ついて解説する。 す条件を説明できる。 対象件を説明できる。 対象性を説明できる。 対象性を説明できる。 対象できる。 にな機構を知り、 はなのできる。 にな機構を知り、 にないできる。	明できる. 題を解くことが る. それぞれの仕組み その仕組みを理かかいの輪郭を作り あ.	

8 0

専門的能力

分野横断的能力

2 0