科目基礎情報 科目番号 0064 科目区分 専門 / 必修 授業形態 実験・実習 単位の種別と単位数 履修単位: 2 開設学科 電気電子工学科 対象学年 3 開設期 後期 週時間数 4 教科書/教材 電気電子工学科担当教員が作成したテキスト 担当教員 浅野 洋介,飯田 聡子,栗本 祐司 到達目標 電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 実験のすすめ方を説明できる。 実験のすすめ方を説明できる。
授業形態 実験・実習 単位の種別と単位数 履修単位: 2 開設学科 電気電子工学科 対象学年 3 3 3 3 3 3 3 3 3
開設学科 電気電子工学科 対象学年 3 週時間数 4 教科書/教材 電気電子工学科担当教員が作成したテキスト担当教員 浅野 洋介,飯田 聡子,栗本 祐司 到達目標 電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 埋想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 非価値目1 実験の進め方につい 実験のすずめ方を説明できる 実験のすずめ方を説明できる。 またのすずめ方を説明できる。 またのすずめ方を説明できた。 またのすずめ方を説明できた。 またのすず かちを説明できた。 またのすず からかまたが見からればればればればればればればればればればればればればればればればればればれば
開設期 後期 週時間数 4 教科書/教材 電気電子工学科担当教員が作成したテキスト 担当教員 浅野 洋介,飯田 聡子,栗本 祐司 到達目標 電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 埋想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 非流のするか方を説明できる。 実験のするか方を説明できる。 またのするか方を説明できる。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするか方を説明できた。 またのするからかられていまります。 またのする またのする またのする またのする またのする またのする またのする またのする またのまたのまた。 またのする またのする またのまたのまたのまたのまたのまたのまたのまたのまたのまた。 またのまたのまたのまたのまたのまたのまたのまたのまたのまたのまたのまたのまたのま
教科書/教材 電気電子工学科担当教員が作成したテキスト 担当教員 浅野 洋介,飯田 聡子,栗本 祐司 到達目標 電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 理論を理解し実験の進め方につい 実験のすずめ方を説明できる。 またのすずめ方を説明できる。
担当教員 浅野 洋介,飯田 聡子,栗本 祐司 到達目標 電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 理論を理解し実験の進め方につい 実験のまずめ方を説明できる。 ま論のまずめ方を説明できる。
到達目標 電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 理論を理解し実験の進め方につい 実験のまずめ方を説明できる。 またのまずめ方を説明できる。
電気磁気学、電気回路、電子工学、コンピュータ工学など、各分野の実験を行い講義で学んだ知識の理解を深める。製作実習を通して、回製作手順を理解し回路製作の技術を高める。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 理論を理解し実験の進め方につい 実験のまずめ方を説明できる。 またのまずめ方を説明できる。
製作手順を理解し回路製作の技術を高める。 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 理論を理解し実験の進め方につい 実験のまずめ方を説明できる 実験のすずめ方を説明できる
理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 理論を理解し実験の進め方につい 実験のまずめ方を説明できる 実験のまずめ方を説明できる
理論を理解し実験の進め方につい 実験のますめ方を説明できる。 実験のますめ方を説明できる。
評価項目2 実験器具の測定原理と取り扱いを 実験器具の取り扱いを説明できる。 実験器具の取り扱いを説明できる。 実験器具の取り扱いを説明できる。 実験器具の取り扱いを説明できる。
評価項目3 報告書の考察に関する口頭試問に 報告書の実験結果に関する口頭試 報告書が未提出。 報告書がまることができる。 報告書が未提出。
学科の到達目標項目との関係
準学士課程 2(1) 準学士課程 2(2) 準学士課程 2(3) 準学士課程 3(1) 準学士課程 4(1) 準学士課程 4(2)
概要 各実験室の専門を生かしたテーマの実験を行う。
実験における報告書は単に提出するだけではなく、必要に応じて担当教員の指導を受けること、内容が不十分な場 授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。
授業の進め方・方法 再提出となることがある。
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。
授業の進め方・方法
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 注意点 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 注意点 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分
授業の進め方・方法再提出となることがある。 実験の詳細な進め方は別途資料を配布する。注意点実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。授業の属性・履修上の区分口 ICT 利用
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 注意点 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 ロアクティブラーニング ロICT 利用 ロ遠隔授業対応 ロ実務経験のある教員によ 授業計画
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 □ 1週 実験内容についての説明 各実験テーマの内容を理解する。 □ 2週 論理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 □ 1週 実験内容についての説明 各実験テーマの内容を理解する。 2週 論理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する 3週 三相電力の測定(電力実験室) 三相電力について理解する
授業の進め方・方法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 □ 1週 実験内容についての説明 各実験テーマの内容を理解する。 □ 2週 論理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する □ 3週 三相電力の測定(電力実験室) 三相電力について理解する □ 4週 三相交流波形の測定(電力実験室) 三相交流波形の測定について理解する
授業の進め方・方法
授業の進め方・方法
授業の進め方・方法 再提出となることがある。 実験の許細な進め方は別途資料を配布する。 定験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 □ 1週 実験内容についての説明 名実験テーマの内容を理解する。 □ 3週 海理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する □ 3週 三相電力の測定(電力実験室) 三相電力について理解する □ 4週 三相交流波形の測定(電力実験室) 三相で流波形の測定について理解する □ 5週 レポートの作成指導、再実験指導 □ 6週 電磁誘導に関する実験(ものづくり実験室) 電磁誘導について理解する □ ダイオードによる整流と温度特性(ものづくり実験室) 電磁誘導について理解する □ ダイオードによる整流と温度特性(ものづくり実験室) 電磁誘導について理解する
授業の進め方・方法 再提出となることがある。 実験の容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 1週 実験内容についての説明 名実験テーマの内容を理解する。 2週 論理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する 3週 三相電力の測定(電力実験室) 三相電力について理解する 4週 三相交流波形の測定(電力実験室) 三相電力について理解する 5週 レポートの作成指導、再実験指導 6週 電磁誘導に関する実験(ものづくり実験室) 電磁誘導について理解する 7週 ダイオードによる整流と温度特性(ものづくり実験室) ダイオードについて理解する 8週 トランジスタの静特性(ものづくり実験室) トランジスタについて理解する
授業の進め方・方法 再提出となることがある。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 1週 実験内容についての説明 名実験テーマの内容を理解する。 2週 論理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する 3週 三相電力の測定(電力実験室) 三相電力について理解する 4週 三相交流波形の測定(電力実験室) 三相電力について理解する 5週 レポートの作成指導、再実験指導 □ 三相交流波形の測定に対ってり実験室) 電磁誘導について理解する 7週 ダイオードによる整流と温度特性(ものづくり実験室) 電磁誘導について理解する 8週 トランジスタの静特性(ものづくり実験室) トランジスタについて理解する 8週 トランジスタの静特性(ものづくり実験室) トランジスタについて理解する
万法 再提出となることがある。 実験の詳細な進め方は別途資料を配布する。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定数・の店性・履修上の区分 アクティブラーニング ICT 利用 遠隔授業対応 実務経験のある教員によ 授業計画 週 授業内容 週ごとの到達目標 1週 実験内容についての説明 名実験テーマの内容を理解する。 2週 論理回路の応用に関する実験(ものづくり実験室) 論理回路について理解する 3週 三相電力の測定(電力実験室) 三相電力について理解する 3週 三相電力の測定(電力実験室) 三相で流波形の測定について理解する 3週 三相電力に関する実験(ものづくり実験室) 三相で流波形の測定について理解する 3週 三相で流波形の測定について理解する 3週 三相で流波形の測定について理解する 3週 三相で流波形の測定について理解する 3週 月で作成指導、再実験指導 5週 レポートの作成指導、再実験指導 5週 レポートの作成指導、再実験指導 5週 収ポートの作成指導、再実験指導 5週 収ポートの作成指導、再実験指導 5週 収ポートの作成指導、再実験指導 5週 収別・カランジスタの静特性(ものづくり実験室) 電磁誘導について理解する 3週 関作実習1 ライントレースロボットの本体を作成する 10週 製作実習2 ライントレースロボットの制御回路を作成する 10週 製作実習2 100円 大型・大型・大型・大型・大型・大型・大型・大型・大型・大型・大型・大型・大型・大
接業の進め方・方法
接続の詳細があった方法
接続の達め方・方法 実験の詳細な進め方は別途資料を配布する。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画
接業の進め方・方法
接験の語か方・方法 実験内容の予習を行い、実験やレボートの作成に対処できるようにしておくこと。 定められた期限内にレボートを完了すること。
接業の進め方・方法 再提出となることがある。 実験内容の子習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 週 授業内容 週ごとの到達目標 □ 1週 実験内容についての説明 ○ 含実験テーマの内容を理解する。 □ 2週 論理回路の応用に関する実験(ものづくり実験室) 三相電力について理解する □ 3週 三相電力の測定(電力実験室) 三相電力について理解する □ 4週 三相交流波形の測定(電力実験室) 三相で流波形の測定について理解する □ 5週 レポートの作成指導、再実験指導 □ 6週 電磁誘導に関する実験(ものづくり実験室) 電磁誘導について理解する □ 8週 トランジスタの静特性(ものづくり実験室) ライントレースロボットの本体を作成する □ 10週 製作実習 □ ライントレースロボットを完成させ、レポートを 11週 製作実習 □ ライントレースロボットを完成させ、レポートを 11週 製作実習 □ フィントレースロボットを完成させ、レポートを 11週 以ポートの作成指導、再実験指導 □ ライントレースロボットを完成させ、レポートを 11週 以ポートの作成指導、再実験指導 □ 13週 レポートの作成指導、再実験指導 □ 13週 レポートの作成指導、再実験指導 □ 15週 レポートの作成指導 □ 15週 レポートの作成指域 □ 15回 レポートの作成指域 □ 15回
接業の進め方・方法 再提出となることがある。 実験内容の予習を行い、実験やレポートの作成に対処できるようにしておくこと。 定められた期限内にレポートを完了すること。 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員によ 授業計画 □ 授業内容 □ 選びとの到達目標 □ 担実験内容についての説明 ○ 各実験テーマの内容を理解する。 □ 温値図路の応用に関する実験(ものづくり実験室) ○ 温値配のいて理解する □ 当相電力の測定(電力実験室) ○ 日電力について理解する □ 担交流波形の測定(電力実験室) ○ 日電力について理解する □ 回 を経済導に関する実験(ものづくり実験室) ○ 日電が液液形の測定について理解する □ の場が違いのより実験室) ○ 日本で流波形の測定について理解する □ の場が違いのより実験室) ○ 日本で流波形の測定について理解する □ 関・大・ト・の作成指導、再実験指導 □ ライントレースロボットを完成させ、レポートを作成する □ 11週 製作実習1 □ フボートの作成指導、再実験指導 □ フボートの作成指導、再実験指導 □ 13週 レポートの作成指導、再実験指導 □ 13週 レポートの作成指導、再実験指導 □ 13週 レポートの作成指導、再実験指導 □ 15週 レポートの作成指導 □ 15週 レポートに関する 15回
接業の進め方・方法
接業の進め方・方法