7127	#上耒尚寺	事門学校	開誦年度	令和04年度 (2	022年度)	授業科		宣 気電子材料	
科目基礎	計報								
科目番号	科目番号 0126				科目区分	専門	専門 / 選択		
受業形態 講義					単位の種別と単位				
開設学科 電気電子工					対象学年	5			
開設期前期				週時間数 2					
教科書/教材 なし									
担当教員	1,2	飯田 聡子							
<u></u>	<u> </u>	ихш 40 3							
・誘電体材		理解し、双板 性体の基礎特	図子モーメント、分 特性・各種磁性を定り	を を を を を を を を を を を を を を を を を を を	ハて説明でき、誘電化特性に基づいた。	■ 体・絶縁体の 具体的応用係	D具体的 列を理解	内応用例を理解できる。 解できる。	
ルーブリ	ーーー リック								
			理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安		
誘電体			誘電体材料の特徴を理解し、双極		誘雷体材料の特徴を理解し、双極		誘電体材料の特徴を理解し、双極		
			子モーメント、分極、圧電効果について説明でき、誘電体・絶縁体の具体的応用例を理解できる。		子モーメント、分極、圧電効果に ついて説明でき、誘電体・絶縁体の 具体的応用例を知っている		果に	子モーメント、分極、圧電効果に ついて説明でき、誘電体・絶縁体の 具体的応用例を理解できない	
磁性体			性・各種磁性を定性的に説明でき、 磁化特性に基づいた具体的応用例		磁性の成り立ち・磁性体の基礎特性・各種磁性を定性的に説明でき、 磁化特性に基づいた具体的応用例 を知っている		磁性の成り立ち・磁性体の基礎特性・各種磁性を定性的に説明でき、 磁化特性に基づいた具体的応用例 を理解できない		
学科の到	達日標項	目との関係	•						
	₹ 2(2) 準学	士課程 2(3)							
	 等								
奶 要		これまで当	さんできた電気磁気	学、電子工学、化学	デを基礎 <i>と</i> して、誘	電体及び磁	性材料	の成り立ちと特性を学ぶ。	
<u> 授業</u> の進め	カ方・方法		がいていまた電気磁気学、電子工学、化学を基礎として、誘電体及び磁性材料の成り立ちと特性を学ぶ。 いいて授業を進める。						
注意点	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			: :基礎として授業を1	テう。わからないご	とがあれば	随時質	問に訪れること。	
		上の区分	10,7, 0,2,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 323,100	
		·	1						
	·	ヽ /ブ			□ 遠隔授業対応			□ 宝務経験のある教員による授業	
	ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対応			□ 実務経験のある教員による授業	
		ング	□ ICT 利用		□ 遠隔授業対応			□ 実務経験のある教員による授業	
授業計画						国プレの列法	日煙	□ 実務経験のある教員による授業	
		週 打	受業内容		й	週ごとの到達 5主味命物			
		週 排1週 补	受業内容 复素誘電率、分極		· · · ·	复素誘電率、	分極を	定理解できる	
		週 排 1週 补 2週 茅	受業内容 夏素誘電率、分極 又極子モーメント	≠₩∖∕₩≠₩	й 4 3	复素誘電率、 以極子モーメ	分極を	と理解できる と理解できる	
		週 排 1週 补 2週 5 3週 情	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材		〕 在 习 宜	复素誘電率、 収極子モーメ 電界における	分極を ントを 誘電を	で理解できる で理解できる 材料の特性を理解できる	
		週	受業内容 复素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性	上質) 건 코 급 급	复素誘電率、 以極子モーメ 電界における 強誘電体の基	分極を ントを 誘電 本的性	と理解できる と理解できる 料の特性を理解できる は質を理解できる	
	Ų	週 月 1週 着 2週 第 3週 日 4週 号	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極	上質	〕 社 又 []	复素誘電率、 双極子モーメ 電界における 強誘電体の基 強誘電体の自	分極を	と理解できる と理解できる 材料の特性を理解できる 性質を理解できる 版を理解できる	
	Ų	週 月 1週 茶 2週 第 3週 曾 4週 号 5週 号	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 E電効果	上質 <u>取</u>	〕 社 文 信 引 引	复素誘電率、 以極子モーメ 電界における 強誘電体の基 強誘電体の自 王電効果を理	分極を シトを 誘電を 本的性 発分極 解でき	と理解できる と理解できる 材料の特性を理解できる 性質を理解できる 駆を理解できる	
	Ų	週 打 1週 茶 2週 交 3週 草 4週 弓 5週 弓 6週 月	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 正電効果 具体的材料の種類と	上質 <u>取</u>	〕 社 文 信 引 引	复素誘電率、 以極子モーメ 電界における 強誘電体の基 強誘電体の自 王電効果を理	分極を シトを 誘電を 本的性 発分極 解でき	と理解できる と理解できる 材料の特性を理解できる 性質を理解できる 版を理解できる	
	Ų	週	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電を 金誘電体の基本的性 金誘電体の自発分極 田電効果 具体的材料の種類と 中間試験	上質 <u>取</u>	〕 社 文 信 引 引	复素誘電率、 以極子モーメ 電界における 強誘電体の基 強誘電体の自 王電効果を理	分極を シトを 誘電を 本的性 発分極 解でき	と理解できる と理解できる 材料の特性を理解できる 性質を理解できる 駆を理解できる	
授業計画	Ų	週 月 1週 存 2週 7 3週 年 4週 号 5週 号 6週 月 7週 男 8週 日	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 圧電効果 具体的材料の種類と 中間試験 式験返却、解説	注質 図 二特性、応用例) 注 文 章 号	复素誘電率、 以極子モーメ 電界における 強誘電体の基 強誘電体の自 玉電効果を理 具体的材料の	分極を シトを 誘電材 本的性 発分極 解でき 種類と	と理解できる と理解できる 対料の特性を理解できる は質を理解できる 変を理解できる 変を理解できる をもなってきる をもなってきる ともなってきる ともなってきる	
授業計画	Ų	週 月 1週 名 2週 第 3週 日 4週 号 5週 日 6週 月 7週 男 8週 日 9週 日	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 圧電効果 具体的材料の種類と 中間試験 試験返却、解説 磁気の成り立ち、破	注質 図 - 特性、応用例 弦気双極子モーメン) 注 3 5 5 5	复素誘電率、 双極子モーメ 電界における 強誘電体の基 強誘電体の自 王電効果を理 具体的材料の	分極を シトを 誘電材 本的性 発分植 解でき を 種類と	と理解できる と理解できる 対料の特性を理解できる 対質を理解できる 変を理解できる 変を理解できる をもなる と をもなる と を と を と は は に は に は に に に に に に に に に に に に に	
授業計画	Ų	週 月 1週 存 2週 分 3週 日 4週 号 5週 号 6週 月 7週 男 8週 早 9週 言 10週 石	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 正電効果 具体的材料の種類と 中間試験 式験返却、解説 磁気の成り立ち、磁 夏素透磁率、磁区、	注質 を 特性、応用例 を 表気双極子モーメン 磁化	· · · · · · · · · ·	复素誘電率、 双極子モーメ 電界における 強誘電体の基 強誘電体の自 王電効果を理 具体的材料の 具体的材料の 复素透磁率、	分極をシートを表する。	と理解できる と理解できる が料の特性を理解できる は質を理解できる 変を理解できる 変を理解できる をもなる と特性、応用例を理解できる な特性、応用例を理解できる な特性、応用例を理解できる	
授業計画	Ų	週	受業内容 夏素誘電率、分極 又極子モーメント 國界における誘電材 強誘電体の基本的性 強誘電体の自発分極 E電効果 具体的材料の種類と 中間試験 試験返却、解説 磁気の成り立ち、磁 夏素透磁率、磁区、 磁性の分類、磁化過	生質には、応用例とは気双極子モーメンの強化の過程	· · · · · · · · · · · · · · · · · · ·	复素誘電率、 双極子モーメ 電界における 強誘電体の基 強誘電体の自 主電効果を理 具体的材料の 具体的材料の 具体的材料の 具体的材料の 製素透磁率、 滋性の分類、	分極をラストを表する。 一般の できる できる できる できる できる できる できる かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい	と理解できる と理解できる 材料の特性を理解できる は質を理解できる 変を理解できる 変を理解できる をる と特性、応用例を理解できる と特性、応用例を理解できる 磁化を理解できる	
授業計画	1stQ	週	受業内容 夏素誘電率、分極 又極子モーメント 国界における誘電材 強誘電体の基本的性 強誘電体の自発分極 正電効果 具体的材料の種類と 中間試験 武験返却、解説 磁気の成り立ち、磁 复素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁	性質	· · · · · · · · · · · · · · · · · · ·	复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電体の自 正電効果を理 具体的材料の 具体的材料の 具体的材料の 製素透磁率、 滋性の分類、 支磁界、異方	分極をある。	を理解できる を理解できる 対料の特性を理解できる 性質を理解できる 変を理解できる をを理解できる をを をを を を を を を を を を を を を を を を を を	
授業計画	1stQ	週	受業内容 复素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 主電効果 具体的材料の種類と 中間試験 試験返却、解説 磁気の成り立ち、磁 复素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半	注質		复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分極をシークを シーク を かった	と理解できる と理解できる 対料の特性を理解できる 対質を理解できる を理解できる を理解できる を理解できる と特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる はなどを理解できる はなどを理解できる はないます。	
授業計画	1stQ	週	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 正電効果 具体的材料の種類と 以ば気の成り立ち、磁 夏素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半 具体的材料の種類と	注質		复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分極をシークを シーク を かった	を理解できる を理解できる 対料の特性を理解できる 性質を理解できる 変を理解できる をを理解できる をを をを を を を を を を を を を を を を を を を を	
授業計画	1stQ	週	受業内容 复素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 主電効果 具体的材料の種類と 中間試験 試験返却、解説 磁気の成り立ち、磁 复素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半	注質		复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分極をシークを シーク を かった	と理解できる と理解できる 対料の特性を理解できる 対質を理解できる を理解できる を理解できる を理解できる と特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる はなどを理解できる はなどを理解できる はないます。	
授業計画	1stQ	週	受業内容复素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 圧電効果 具体的材料の種類と 以験返却、解説 磁気の成り立ち、磁 复素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半 具体的材料の種類と	注質	· · · · · · · · · · · · · · · · · · ·	复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分極ををおいた。本の性のをは、一種のでは、一種の性のでは、というでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	と理解できる と理解できる 対料の特性を理解できる 対解の特性を理解できる を要解できる をを理解できる をなる と特性、応用例を理解できる 磁化を理解できる 強化を理解できる 数異を理解できる 対解を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる と特性、応用例を理解できる と特性、応用例を理解できる	
授業計画	1stQ	週	受業内容 夏素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 正電効果 具体的材料の種類と 以ば気の成り立ち、磁 夏素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半 具体的材料の種類と	注質		复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分極ををおいた。本の性のをは、一種のでは、一種の性のでは、というでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	と理解できる と理解できる 対料の特性を理解できる 対質を理解できる を理解できる を理解できる を理解できる と特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる はなどを理解できる はなどを理解できる はないます。	
授業計画	1stQ 2ndQ	週	受業内容复素誘電率、分極 又極子モーメント 電界における誘電材 強誘電体の基本的性 強誘電体の自発分極 圧電効果 具体的材料の種類と 以験返却、解説 磁気の成り立ち、磁 复素透磁率、磁区、 磁性の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半 具体的材料の種類と	注質	· · · · · · · · · · · · · · · · · · ·	复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分極ををおいた。本の性のをは、一種のでは、一種の性のでは、というでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	と理解できる と理解できる 対料の特性を理解できる 対解の特性を理解できる を要解できる をを理解できる をなる と特性、応用例を理解できる 磁化を理解できる 強化を理解できる 数異を理解できる 対解を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる は特性、応用例を理解できる と特性、応用例を理解できる と特性、応用例を理解できる	
授業計画前期	1stQ 2ndQ	週	受業内容 夏素誘電率、分極 又極子モーメント 国界における誘電材 強誘電体の基準 強誘電体の自発分極 主電効果 具体的材料の種類と 可間試験 武験返却、解説 茲気の成り立ち、磁 支充の分類、磁化過 反磁界、異方性反磁 欠磁性、硬磁性、半 具体的材料の種類と 具体的材料の種類と 具体的材料の種類と	注質	以 在 对	复素誘電率、 収極子モーメ 電界における 強誘電体の基 強誘電外果を理 は歯の材料の 具体的材料の 具体的材料の 具体の分類、 支磁界、異方 次磁性、硬磁	分をををををををををは、一種のできる。これでは、一種のできる。これでは、一種のできる。これでは、一種のできる。これでは、一種のできる。これでは、一種のできる。これでは、一種のできる。これでは、一種のできる。	全理解できる 定理解できる 対料の特性を理解できる 性質を理解できる 変を理解できる 変を理解できる をる 生特性、応用例を理解できる 磁化を理解できる 強程を理解できる 数程を理解できる 数理を理解できる は異方性、を理解できる と特性、応用例を理解できる は異、異方性、を理解できる と特性、応用例を理解できる と特性、応用例を理解できる と特性、応用例を理解できる	