木更津工業高等専門学校		開講年度	平成28年度 (2	016年度)	授業科目	実験・実習Ⅰ
科目基礎情報						
科目番号	0016			科目区分	専門 / 必	修
授業形態	実験・実習		単位の種別と単位数	数 履修単位	履修単位: 2	
開設学科	情報工学科		対象学年	1	1	
開設期	通年		週時間数	2	2	
教科書/教材						
担当教員	米村 恵一,和日	日州平				

|到達目標

行号化・復号の基本的な考え方を理解する。
計測器の使用方法を理解する。
2進数について理解する。
2進数について理解する。
基本的なディジタルIC(AND、OR、NOT)について理解し、適切に使用することができる。
半加算器、全加算器について理解し、基本的なゲートを用いて構成できる。
RSフリップフロップ、Dフリップフロップについて理解し、基本的なゲートを用いて構成できる。
n-bit加算器(応用としては+減算器)を作成し結果をレジスタへ保存できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	符号化・復号の基本的な考え方を 十分に理解する。	符号化・復号の基本的な考え方を 理解する。	符号化・復号の基本的な考え方を 理解していない。
評価項目2	計測器の使用方法を十分に理解する。	計測器の使用方法を理解する。	計測器の使用方法を理解していない。
評価項目3	2進数について十分に理解する。	2進数について理解する。	2進数について理解していない。
評価項目4	基本的なディジタルIC(AND、 OR、NOT)について十分に理解し 、適切に使用することができる。	基本的なディジタルIC(AND、 OR、NOT)について理解し、適切 に使用することができる。	基本的なディジタルIC (AND、 OR、NOT) について理解していない。
評価項目5	半加算器、全加算器について十分 に理解し、基本的なゲートを用い て構成できる。	半加算器、全加算器について理解 し、基本的なゲートを用いて構成 できる。	半加算器、全加算器について理解していない。
評価項目6	ノロッノについて ガに埋除し、 甘木的かゲニトを用いて堪成でき	RSフリップフロップ、Dフリップ フロップについて理解し、基本的 なゲートを用いて構成できる。	RSフリップフロップ、Dフリップ フロップについて理解していない 。
評価項目7	n-bit加算器(応用としては+減算器)を十分な理解のもと作成し結果をレジスタへ保存できる。	n-bit加算器(応用としては+減算器)を作成し結果をレジスタへ保存できる。	n-bit加算器(応用としては+減算器)を作成できない。

学科の到達目標項目との関係

教育方法等

概要	基本的なディジタルICの理解を通して、回路作成スキルの向上を目指す。同時に、フリップフロップについての理解も深め、レジスタを構成し、全加算器と組み合わせた回路を作成する。
授業の進め方・方法	実習がメインとなるため、各自がしっかりと手を動かして、課題を遂行していく必要がある。
注意点	いかなる理由があっても、欠席した場合には、対応した課題を追実験にて遂行すること。

授業計画

		週	授業内容	週ごとの到達目標
		1週	符号化・復号の基礎1	符号化・復号の基礎が理解できる。
		2週	符号化・復号の基礎2	符号化・復号の基礎を理解し、議論ができる。
		3週	符号化・復号の基礎3	符号化・復号の基礎が理解し、応用事例を解くことが できる。
	1stQ	4週	計測機器の取り扱い1	計測機器の取り扱いができる。
		5週	計測機器の取り扱い2	基本的な回路を組み、電圧、電流を計測できる。
		6週	計測機器の取り扱い3	少し大きな回路を組み、電圧、電流を計測でできる。
		7週	ディジタルICの基礎1	基本的なゲートを働きを確認できる。
☆ ☆ 世日		8週	記録整理1	これまで学んだ内容に関して報告書をまとめる。
前期		9週	ディジタルICの基礎2	基本的なゲートを組み合わせて回路を組むことができる。
		10週	ディジタルICの基礎3	LEDを用いて、回路の情報を可視化できる。
		11週	2進数の基礎1	2進数が理解できる。
	2ndQ	12週	2進数の基礎2	2の補数が理解できる。
		13週	2進数の基礎3	モードが理解できる。
		14週	排他的論理和	排他的論理和を理解し、回路を作成できる。
		15週	半加算器	半加算器を理解し、回路を作成できる。
		16週	記録整理2	これまで学んだ内容に関して報告書をまとめる。
		1週	全加算器1	全加算器を理解し、半加算器を用いて回路を作成できる。
		2週	全加算器2	半加算器を用いずに全加算器を作成できる。
後期	3rdQ	3週	RSフリップフロップの基礎1	RSフリップフロップを理解できる。
		4週	RSフリップフロップの基礎2	基本的なゲートを用いて、RSフリップフロップを作成できる。
		5週	Dラッチ回路の基礎1	Dラッチ回路を理解できる。

		6週	Dラッチ回路の基礎2		Dラッチ回路を、基本的なゲートを用いて、作成できる。		
		7週	Dフリップフロップの基礎1		Dフリップフロップを理解できる。		
		8週	記録整理3		これまで学んだ内容に関して報告書をまとめる。		
	4thQ	9週	Dフリップフロップの基礎2		Dフリップフロップ回路を、基本的なゲートを用いて 、作成できる。		
		10週	総合課題(3-bit加算器)作成実習1		全加算器を3-bit分作成する。		
		11週	合課題(3-bit加算器)作成実習2		3-bit分の全加算器を組み合わせて、3-bit加算器を作成する。		
		12週	合課題(3-bit加算器)作成実習3		3-bit加算器の計算結果を保持するレジスタを追加する。		
		13週	総合課題(3-bit加算器)作成実習4			頁調に進んでいた場合には、レジス ソト機能を追加する。	
		14週	総合課題(3-bit加算器)作成実習5		前週までの課題が順調に進んでいた場合には、3-bit加算器に減算機能の追加を検討する。		
		15週	総合課題(3-bit加算器)作成実習6		前週までの課題が順調に進んでいた場合には、3-bit加 算器に減算機能を追加する。		
		16週	記録整理4		これまで学んだ内容に関して報告書をまとめる。		
評価割合							
			レポート	製作物		合計	
総合評価割合			80	20		100	
基礎的能力			60	20		80	
専門的能力			20 0		20		