構年度 平成30	創造設計工学	年度) 技	<u> </u>		
2		区分			
·····································		の種別と単位数			
ザ・情報システム工学専攻					
前期		 間数			
問題を設定する手 る手法を理解でき 工学的問題を解析					
3到達レベルの目安	未到達レベルの目	的な到達レベルの	 の目安		
問題の本質を理解でき解くべき問 題を設定できる		問題設定の手法を理解できる			
論理的な解析できる 論理的解		的解決手法を理解	法を理解できる 論理的解決手法を理解できない		
		の数学的解釈の引	り解釈の手法を理解で 数学的解釈の手法を理解できない		
に解決するための 理解し、解くべき 的解釈を適用し問 味し、知見の整理		:設定する。 !する。			
ある。これを専門	系なく簡単な物理法則 関するかを学ぶ。その コンしながら手法の理	どのような段階(その後同様の問題を		
け自分自身の着想うな態度を身につ	た、得られた答えは	きるよう努力して	えは必ずいろいろな		
		週ご			
工学的問題を処理する手法		工学	工学邸問題の基本的概念を理解する		
	埋していく手法を理解	問題	 理解する		
\≣Л≣⊥	る機器の設計を例とし				
)設計 		理解			
	を利用して解析する	簡単	る手法を理解する		
			得た結論を吟味し、知見の整理と一般化手法を理解する る		
6週 磁気テープ装置の設計 キャプスン直径の設計 7週		問題	問題の本質を理解する		
		物理原理を利用してを利用して解析する手法を理解する る 得た結論を吟味し、知見の整理と一般化手法を理解す			
		る			
プ装置の設計 フインドの設計	解し数学的解釈を使っ	を理			
	し、知見の整理と一般	3			
で曇りない親の設計					
	的解釈を利用して問題	-			
-m -=====	し、知見の整理と一般	得た 	一般化かできる		
14週 抵抗検査装置の設計 数学的解析をまったく使わない			問題の本質を理解し、解くべき問題を設定する。		
	度得た解を吟味し、他の解決策を検討する方法を理 する				
Ι.	.	T -	10		
相互評価		ポ-	合計		
0	0	30	100		
0	0		0		
0	0	30	100		
	0 0 0	0 0	0 0 0 0 0 30 0		