木更	津工業高	高等専門学	校開講年	度 平成28年度	(2016年度)	授	業科目	応用構造工学	!	
科目基	礎情報									
科目番号	<u>1</u>	0021			科目区分	科目区分 専門/選抜				
授業形態	ŧ	授業			単位の種別と	単位数	学修単位: 2			
開設学科	開設学科 環境建設工学専攻				対象学年		専1			
開設期前期							2			
教科書/勃	数材	プリン	・ト配布	配布						
担当教員	Į	石井 延								
到達目	標									
志力,ひ	ずみ,構成	成則について	理解でき,有限要	素法の基本的な考え	た方を理解できる.					
ルーブ	リック									
			理想的な到	 達レベルの目安	標準的な到達	標準的な到達レベルの目安		未到達レベルの目安		
応力, ひずみ				みをテンソルとして	:::::::::::::::::::::::::::::::::::::::	応力, ひずみを理解できる.		応力, ひずみを理解できない.		
 構成則			構成則の役割	割を正しく理解できる	る 構成則の概念	構成則の概念を理解できる.				
有限要素	法		要素,物理》	去則などの有限要素え 念を正しく理解できる	. 更表 物理法	要素,物理法則などの役割を理解 し,有限要素法のイメージができ る.			イメージできない.	
学科の	到達日標	頭目との	 関係		•			•		
	3-1 JABEE		2- 2- Pri-							
		攻科課程 B-	-2							
教育方	法等									
既要		固体力	学を例として,物	理法則や有限要素な	どの考え方を学び	バ, 有限要	素法の全体値	象とその算出結果	見について学ぶ.	
主意点		己訳)作	也	Finite Elements, J. 知識を用いるので,		`			訳,永开学士,松开村	
授業計	画									
		週	授業内容	授業内容			週ごとの到達目標			
前期		1週	ガイダンス		産業界における有限要素法の活用事例などを学ぶ.					
		2週	応力,ひずみ,		線形弾性体を例に,応力,ひずみ,構成則について学ぶ.					
		3週	応力,ひずみ,	応力, ひずみ, 構成則			線形弾性体を例に,応力,ひずみ,構成則について学ぶ.			
	1stQ	4週	応力,ひずみ,	応力, ひずみ, 構成則			線形弾性体を例に、応力、ひずみ、構成則について学ぶ。			
		5週	応力,ひずみ,		線形弾性体を例に、応力、ひずみ、構成則について学ぶ。					
		6週	平面応力,平面			2次元問題における構成則の考え方を学ぶ.				
		7週	平面応力,平面			2次元問題における構成則の考え方を学ぶ.				
		8週	中間試験				中間試験までの内容			
		9週	有限要素近似				要素の役割について学ぶ			
		10週		有限要素近似			要素の役割について学ぶ			
		11週	剛性方程式				要素剛性、全体剛性について学ぶ			
	2ndQ	12週	剛性方程式 境界値問題				要素剛性,全体剛性について学ぶ 境界条件の必要性について学び,その解法について学			
		14週	物体の変形と物体に生じる応力			物体の	習する. 物体の変形と物体に生じる応力の計算方法について学			
		15週	定期試験			これまでの学習内容				
		16週				解説 おいま から				
=ਜ਼ਾ/≖≠ਾ		10池	丹牛市兀			丹牛市尤				
評価割		- hmA		1=====	Ar					
試験		発表	相互評価	態度		トフォリオ	その他	合計		
	総合評価割合 80		0	0	0	20		0	100	
基礎的能	力	30	0	0	0	10		0	40	
総合評価 基礎的能 専門的能 分野横断	力			0 0 0	0 0 0	10 10 0		0 0 0		