東京	工業高等	専門学校	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	令和02年度	(2020年度)	-		 学演習VI		
科目基礎		/ا د د ، د ۰	- INDEED 172	- 11-1HOL 1/X	<u>, /× / </u>	<u> </u>	CALLED INVINCE	- // H **		
		0151			科目区分		専門 / 必修			
授業形態		講義・治	寅習		単位の種別と	単位数	履修単位: 1			
開設学科機械			学科	対象学年	4					
開設期		後期			週時間数	週時間数 2				
教科書/教	材			科書に加え、必要に応じて資料を配布する。						
担当教員		堤 博貴	,小山 幸平,髙田 宗	一朗,原口 大輔						
到達目標										
		野に関する	基礎および応用事項	真の演習を通じ、理	関係を深め、工学的	別識を高	める。			
ルーブリ	リック	1.00	+8-65-1-201-1-2011-2			#7#45±		十四十二 2011		
		埋	想的な到達レベルの				ご到達レベルの目安	未到達レベルの機械が大器も労		
評価項目1		機問	機械/工業力学における応用 問題を解くことができる。		機械/工業刀子におりる基本 問題を説明し、解くことが できる。		業力学における各種 で基礎事項を理解	機械/工業力学 よびその必要性 ない。	の子向視域の 生を理解でき	
評価項目2			力学における応用問 くことができる。	問題を 熱力学には 説明し、角	カ学における基本問題を 明し、解くことができる。。		おける各種原理お事項を理解できる	熱力学の学問令の必要性を理解	頂域およびそ 解できない。	
評価項目3			料力学における応5 解くことができる。		材料力学における基本問題を説明し、解くことができる。		における各種原理 礎事項を理解でき	材料力学の学問 その必要性を理	問領域および 里解できない	
評価項目4			械工作法における原 を解くことができる	ᄓᄷᆔᄓᆝᄧᇶᇎᇄᇚᆝ	法における基本問 」、解くことがで			機械工作法の等でである。		
学科の到	達目標項	頁目との[関係							
教育方法	等									
概要		ものづ	くりを実践する上で に挙げる各項目を重	で、機械工学におけ	サる各分野の基礎お	よび応用	を理解することが必	須である。本授	業では、授	
授業の進め	方・方法				####################################	 iが担当す	 る。適宜例題や演習		 ·深める.	
)))		カ学、数学の微分積				O. CHIME! ME	C110 (>±),FC		
注意点		関数電	卓を必ず持参するこ	٤.						
授業計画	<u> </u>	1.=	T			T.				
後期		週	授業内容				週ごとの到達目標			
	3rdQ	1週	熱機関およびカノ	レノーサイクル	び説明		関の基礎を理解し、カルノーサイクルの計算およいができる。			
		2週	冷凍機およびヒ-	ートポンプ		冷凍サイクルの基礎を理解し、計算および説明ができる。				
		3週	蒸気動力サイクル	iカサイクル		ランキンサイクルの基礎を理解し、計算および説明ができる。				
		4週	空気調和			空気調和の基礎を理解し、湿り蒸気線図を使った計算および説明ができる。				
		5週	1自由度の減衰・	非減衰振動		の運動	減衰・非減衰系の1自由度振動を運動方程式で表し、系の運動を理解できる。			
		6週	1自由度の強制・	過渡振動	型 を運動方程		か方程式で表し、系の	D強制・過渡振動 1自由度の強制及び過渡振動程式で表し、系の運動を理解できる。		
		7週	2自由度の自由・	強制振動	 振動 		2自由度の自由及び強制振動を運動方程式で表し、系の 運動を理解できる。			
		8週	カスティリアノの	D定理	15		カスチリアノの定理を理解し、不静定はりの問題などに応用できる。			
	4thQ	9週	マトリックス法	トリックス法		マトリ 題など	マトリックス法による構造解析を理解し,トラスの問題などに応用できる.			
		10週	機械工作法機械	成工作法 機械加工の概要		機械加工の概要を理解し、説明ができる。				
		11週	機械工作法 切削	□作法 切削機構、切りくず、構成		切削機構 、切りくず、構成刃先 を引る。		成刃先 を理解し	説明ができ	
		12週	機械工作法 切貨			る。 切削抵抗を理解し、計算し、説印			 説明ができる。	
		13週	機械工作法フラ				フライス加工を理解し、計算および説明ができる。			
		14週	機械工作法 研	研削砥石		研削理論、研削砥石 を理解し、説明ができる。				
		15週			学習		習をまとめ、レポートに整理する。			
		16週								
]アカリ=		の学習内容と到					1	1,2,000	
分類		分野	学習内容	学習内容の到達目標			万数 不明 左士 ======	到達レベル	授業週	
専門的能力				すべり摩擦の意 る。	すべり摩擦の意味を理解し、摩擦力と摩擦係数の関係を説明る。 振動の種類および調和振動を説明できる。			[₹] 4		
								4		
	カ野別の 門工学	の専 機械	 系分野 力学	不減衰系の自由振動を運動方程式で表し、系の運動を説明で			系の運動を説明でき	る 4		
	「工子			。 減衰系の自由振動を運動方程式で表し、系の運動を		の運動を説服できる				
				調和外力による減衰系の強制振動を運動方程式で表し、乳						
				を説明できる。					1	

			調和3 を説	変位による減衰系の強制振動 [。] 明できる。	^{ib} 4		
			流体の		3		
		}	流体の	の性質を表す各種物理量の定	3 3		
		ž	絶対原	王力およびゲージ圧力を説明 ⁻	3		
			定常	流と非定常流の違いを説明で	3		
		}	流線。	と流管の定義を説明できる。	3		
		<u> </u>	連続の	の式を理解し、諸問題の流速	3		
		<u> </u>	層流。	と乱流の違いを説明できる。	3		
			レイ. きる。	ノルズ数と臨界レイノルズ数	3		
			ダル:	シー・ワイスバッハの式を用い	3		
			ムー	ディー線図を用いて管摩擦係	3		
		3	熱力	学で用いられる各種物理量の	4		
		[閉じた 。	た系と開いた系、系の平衡、	3 4		
		I <u> </u>	熱力	学の第一法則を説明できる。	4		
		熱流体	閉じた系と開いた系について、エネルギー式を用いて、熱、仕事 、内部エネルギー、エンタルピーを計算できる。			4	
			閉じた系および開いた系が外界にする仕事をp-V線図で説明できる。			· 4	
			理想気体の圧力、体積、温度の関係を、状態方程式を用いて説明できる。			^月 4	
			定積」 きる。	北熱、定圧比熱、比熱比およる	<u> </u>		
			内部 る。	エネルギーやエンタルピーの	- 4		
				変化、等積変化、等温変化、 を理解し、状態量、熱、仕事:	D 4		
				学の第二法則を説明できる。	4		
			サイク	ーークルの意味を理解し、熱機関(4		
]	カル.	ノーサイクルの状態変化を理解	4		
		= = = = = = = = = = = = = = = = = = = =	エンるエ	トロピーの定義を理解し、可 ントロピーの変化を説明でき	[†] 4		
	サー		クルをT-s線図で表現できる。	4			
評価割合							
	試験			演習レポート	その他	合計	
総合評価割合	0	0		100	0	100	
基礎的能力	0	0		50	0	50	
専門的能力	0			50	0	50	
分野横断的能力	0			0	0	0	