 東京	京工業高等	専門学校		開講年度	平成28年度 (2	2016年度)	授業科目	電子物性			
科目基礎			1			,					
科目番号		0013				科目区分 専門 / 必修		修			
授業形態		授業				単位の種別と単位	位数 履修単位:	1			
開設学科		電気工学	学科			対象学年	学年 4				
開設期		前期				週時間数					
教科書/教	材	電子物性 / 松澤剛雄、高橋 清、他 / 森北出版									
担当教員		伊藤 浩									
到達目	票										
2.格子 3.雷子	振動、固体の 伝導モデル(の熱的性質に こついて基礎	こつい [™] 楚を理解	について説明 て概要を説明で 解し、説明で きる。 旋を理解し、 説	できる。 きる。						
ルーブ	リック										
			理	想的な到達レ	ベルの目安	標準的な到達レ	ベルの目安	未到達レ	ベルの目安		
評価項目1				本的な結晶構 ついて説明で	造の結合力、種類 きる。				的な結晶構造の結合力、種類 ハて説明できない。		
評価項目2				て概要を説明できる。 て概要を知って			いる。 て概要		動、固体の熱的性質につい を説明できない。		
評価項目3				解し、数式を使って説明できる。 いて説明でき			3。 解し、		導モデルについて基礎を理 説明できない。		
評価項目4							促を知っている。		7学の基礎を理解できていた		
評価項目5			礎	礎を理解し、説明できる。 礎を理解し、説			ーバンド理論の基 固体のエ 明できる。		Cネルギーバンド理論の基 Yし、説明できる。		
	到達目標項	自目との関	り 係								
教育方法	法等										
概要		電子物性	ŧΙでは	は結晶構造、札	子の働きを解明・利 各子振動、固体の熱は 子エネルギーバンド	的性質を前半に学	 電子デバイス等へ 習し、後半は電子	の応用技術 物性を理解	 を学ぶ学問で するのに必要	 ある。 な最小限の	
受業の准	 め方・方法				<u> ナエイルキーハント</u> の内容に沿って進め [・]		要か頂日に絞って	変く説明し	ていく		
	·ノ/」 · /J/広				の内容に沿って進め 量子工学で学んだ基礎					翌について	
注意点		は自学的	習に	より取り組み	学習すること。	ペチスと1 刀に生	,,,, 0	スポッリ日	文日次 円	占に ング・し	
授業計	画										
		週		受業内容			週ごとの到達目標				
		1週		のガイダンス			科目の概要を理解する。				
				合力の概要 オン結合,共有結合,金属結合			結合力の概要を理解する。 (オンはない サナザム)				
		2週			<u>結合, 金属結合</u> 指数, ブラベー格子	ブラベー牧ス		イオン結合, 共有結合, 金属結合の概要を理解する。 空間格子, ミラー指数, ブラベー格子について理解 する。			
	1stQ	4週	ダイ	ヤモンド構造	, X線回折		ダイヤモンド構造を理解し、X線回折の原理を る。			理を理解す	
		5週	古典的	 的電子伝導モ	古典的電子伝導モデルの を理解する。			デルの概要	の概要と、導出に関わる関係式		
		6週	合成					温度依存性の原理を理解する。			
		7週	前半	かまとめと演習			,				
				間試験							
前期		9週		子力学の基礎 子性と波動性, ド・ブロイ波, 不確定性原理			量子力学の基礎を理解する。				
		10週	井戸	/ユレディンガーの波動方程式, 井戸型ポテンシャル			量子力学の基礎を理解する。				
		11週		ンネル効果、量子数、パウリの排他率			量子力学の基礎を理解する。				
	2ndQ	12週 金		体のエネルギーバンド 属の自由電子モデル,周期的境界条件,フェルミデ ラック分布			金属の自由電子モデル,周期的境界を理解する。				
		13週	電子	1 ファッカル 電子密度, フェルミ準位、クローニッヒペニーモデル , E-k関係			 電子密度, フェルミ準位、クローニッヒペニーモデル , E-k関係を理解する。				
		14週		属・絶縁体・半導体のバンド構造			金属・絶縁体・半導体のバンド構造を理解する。				
				半のまとめと演習							
		16週									
モデル	コアカリニ	Fユラム ^の	D学習	内容と到達	桂目標						
 分類		分野		学習内容	学習内容の到達目標	票			到達レベル	授業週	
		1.3.5.		電子回路 ダイオードの特徴を説明できる。				3			
					電子の電荷量や質量などの基本性質を説明できる。 エレクトロンボルトの定義を説明し、単位換算等の計算ができる。				3		
	1	の車「車気・	・雷子					 算ができる	3		
古明わか	」 分野別の	ひみ 1年ない									
専門的能	カ 分野別の門工学	系分野	予	電子工学	0						
専門的能	力 分野別の門工学	系分野	₹	電子工学	。 原子の構造を説明 パウリの排他律を理				3		

		ži į	結晶、エネルギー/ 解し、金属と絶縁体	ベンドの形成、フェ *のエネルギーバン	:ルミ・ディラック ・ド図を説明できる	分布を理	3		
	金属の電気的性質を説明し、移動度や導電率の計算ができる。						3		
	真性半導体と不純物半導体を説明できる。						3		
		半導体のエネルギーバンド図を説明できる。							
			pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の 電流一電圧特性を説明できる。						
	バイポーラトランジスタの構造を理解し、エネルギーバンド図を 用いてバイポーラトランジスタの静特性を説明できる。						3		
		Ţ	電界効果トランジス	スタの構造と動作を	説明できる。		3		
評価割合									
	試験	発表	相互評価	態度	ポートフォリオ	その他	4	計	
総合評価割合	100	0	0	0	0	0	1	00	
基礎的能力	礎的能力 50		0	0	0	0	5	0	
専門的能力	50	0	0	0	0	0		0	
分野横断的能力	0	0	0	0	0	0	0		