東京	工業高等	専門学校	菜 開講年度 平成31年度 (2	2019年度)	授	業科目	電気電子工学実験II		
科目基础	楚情報								
科目番号		0054		科目区分		専門 / 必修			
受業形態		実験・		単位の種別と単位	数	履修単位: 2			
制設学科		電気工	学科	対象学年		2			
制設期	.	後期	" D. L	週時間数		4			
科書/教	双材		作成した実験テキスト						
当教員		土田 耕	治,新國 広幸						
到達目 	_	EA + 444 A + 15		# I +	. =#=	* T/_LDTSA	- 1 10 - 		
●則字省 基礎,電	・講義・美閣 子計測技術の	験を総合的 の基礎,報 [:]	に実施し,電気電子工学の基礎習得を目 告書作成等の基礎を習得する.	標とする. ここでは	ま, 講	表 形式美験()	こより、電気埋論の基礎、電磁気の		
レーブリ		,							
			理想的な到達レベルの目安標準的な到達レイルの目安に			ベルの目安 未到達レベルの目安			
平価項目	1		電気回路の代表的な原理が説明でき、基本的な問題を解くことができる.	電気回路の代表的きる.			電気回路の代表的な原理が説明で きない.		
平価項目	2		電子計測機器の使い方が説明でき,正しく使用することができる.	電子計測機器の使る.	い方た	が説明でき	電子計測機器の使い方が説明できない.		
平価項目	3		報告書の書き方が説明できて,その書き方通りに報告書を作成することができる.	報告書の書き方が説明できる.			報告書の書き方が説明できない.		
学科の	到達目標項	画 目 と の 見	関係						
数育方》 数									
既要	_, .,								
	め方・方法	事前レス 演習を行 ことがる	ポートには,課題問題,実験内容の記述 行う.実験レポートは実験日,当日に実 ある.	を行う. 実験前に課 験担当教員のチェッ	関の記り	说明を行う. 受けて提出を	また,必要に応じて機材の説明・ と行う.必要に応じて再提出を行う		
注意点		_	流回路の基礎,静電気・静磁気の基礎, -トA4・グラフ用紙A4・電卓などが	テスターによる電気 必要である. 事前事	気計測 軽後のし	の基礎を習行 レポートの扱	得していること. 昆出必須である.		
業計画	画		1						
	3rdQ	週	授業内容	Į.	周ごと	の到達目標			
後期		1週	ガイダンス 交流回路の実験手順,実験の諸注意. 方を解説する.	レポートの書き	実験手順,レポートの書き方が理解できる.				
		2週	電磁力. 電磁力を示す理論(電流,磁界,磁力 方法を解説する.)の関係と実験	電磁力を示す理論(電流,磁界,磁力)の関係が理解できる。				
		3週	誘導起電力. 磁界とソレノイドの関係(誘導起電力 と実験方法を解説する.)について解説	磁界と電磁誘導の関係が理解できる.				
		4週	コンデンサの性質. コンデンサの構造と特性, コンデンサ 成静電容量の関係を解説する.	の接続方法と合	コンデンサの特性が理解できる.				
		5週	実験装置の使い方 I:オシロスコープ 2次元で表示される時間と電圧の関係 ,直流,交流電圧の特性について解説	を解説する. また フ	オシロスコープの使い方が理解できる.				
		6週	実験装置の使い方Ⅱ:オシレータ,交 各機器の使い方を解説する.また,交 解説する.	流電圧計. 流波形の特徴を 3	交流の実効値,最大値の関係を理解する.				
		7週	レポート整理日.	(3	これまでの実験内容の不明な点を自己点検する. 必引に応じて, 再実験を各自行い, 実験内容の理解を高める.				
		8週	交流回路 1 RC直列回路。 RC回路を通過する交流電圧波形の特性 た、コンデサの自作方法を解説する.	生を解説する. ま 3	交流回路内のコンデンサの電気的特性を理解する.				
	4thQ	9週	交流回路2 RL直列回路. RL回路を通過する交流電圧波形の特性 た、コンデサの自作方法を解説する.	まる。ま 3	交流回路内のコイルの電気的特性を理解する.				
		10週	交流回路3 LC並列回路. LC並列回路を通過する交流電圧波形の.)特性を解説する L	LC並列回路の特性を理解する.				
		11週	作製課題 その1 これまでの行ってきた実験課題から、 、電子回路の法則などを更なる理解深 を選び、回路の設計、評価の確認を行	ぬるための課題 📙	電子回路の基礎が理解できる.				
		12週	作製課題 その2 これまでの行ってきた実験課題から, 、電子回路の法則などを更なる理解深 を選び,回路の設計,評価の確認を行	電子素子の特性 めるための課題 う.	電子回路のの基礎が理解できる.				
		13週	レポート整理日	(6	これまでの実験内容の不明な点を自己点検する. 必要に応じて, 再実験を各自行い, 実験内容の理解を高める.				
		1.4\H	後期期実験の自習日	- Li	必要に応じて, 再実験を各自行い, 実験内容の理解を 高める. 実験全体を通して, 必要に応じて, 再実験を各自行い				
		14週	19年の大阪の日白口	ī	高める				

	16:	週							
モデルコス	アカリキュ	ラムの学習	内容と到達	目標					
分類		分野	学習内容	学習内容の到達目標				到達レベル	授業週
基礎的能力		工学実験技 術(各、理) 方処理、 夕察方法)	工学実験技 実種測 方 方 処 方 之 架 方 之 型 法) 名 秦 、 文 表 、 理 法 人 文 表 、 文 、 之 、 之 、 之 、 之 、 之 、 之 、 と 、 と 、 と 、 と	物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。			3		
	工学基礎			実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取扱を身に付け、安全に実験できる。				3	
				実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考 察の論理性に配慮して実践できる。				3	
				実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。				3	
				タについて				3	
				実験データを適切なグラフや図、表など用いて表現できる。				3	
				実験の考察などに必要な文献、参考資料などを収集できる。			3		
				実験・実習を安全性や禁止事項など配慮して実践できる。				3	
				個人・複数名での実験・実習であっても役割を意識して主体的に取り組むことができる。				3	
				共同実験における基本的ルールを把握し、実践できる。				3	
				レポートを期限内にきる。	3				
		電気・電子 系分野【実験・実習能 力】	電気・電子 系【実験実 習】	電圧・電流・電力などの電気諸量の測定が実践できる。				4	
				抵抗・インピーダンスの測定が実践できる。				4	
専門的能力				オシロスコープを用いて実際の波形観測が実施できる。				4	
	分野別の工 学実験・実 習能力			電気・電子系の実験を安全に行うための基本知識を習得する。				4	
				インピーダンスの周波数特性を考慮し、実験結果を考察できる。				4	
				共振について、実験結果を考察できる。			4		
				増幅回路等(トランジスタ、オペアンプ)の動作に関する実験結果を考察できる。				4	
				論理回路の動作にて	ついて実験結果を考	誇できる。		4	
評価割合									
試験発表			表	相互評価	態度	ポートフォリオ	レポート	合計	-
総合評価割合 30		0		0	0	0	70	100	
基礎的能力 30		0		0	0	0	0	30	
専門的能力 0		0		0	0	0	70	70	
分野横断的能	七力 0	0		0	0	0	0	0	