東京工業高等専門学校		開講年度	平成29年度 (2	2017年度)	授業科目	ディジタル回路
科目基礎情報						
科目番号	0087			科目区分	専門/必	修
授業形態	授業			単位の種別と単位数	友 履修単位	:: 2
開設学科	電気工学科			対象学年	3	
開設期	通年			週時間数	2	
教科書/教材	浜辺 隆二著、論理回路入門(第3版) 森北出版					
担当教員	大前 佑斗					
到達目標						

- (目的) 「「目的」 「ディジタル回路は、ハードウェア設計の基礎理論であり、電化製品と深い関わりを持つ。この知識の取得を目指すため、本講義では、2進数、ブール代数、論理関数、組み合わせ回路、順序回路について学ぶ。 【到達目標】 1. 進数変換を行うことができる。 2. 組み合わせ回路を記述できる。 3. 順序回路を記述できる。

ルーブリック

· · · · · · · · · · · · · · · · · · ·							
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安				
評価項目1	ブール代数・進数変換について理解でき、説明できる。	ブール代数・進数変換について理 解できる。	ブール代数・進数変換について理 解できない。				
評価項目2	組み合わせ回路について理解でき、説明できる。		組み合わせ回路について理解できない。				
評価項目3	順序回路について理解でき、説明できる。	順序回路について理解できる。	順序回路について理解できない。				

学科の到達目標項目との関係

教育方法等

概要	様々な電化製品が世の中にあふれているが、この根本にはディジタル回路がある。本授業では、その基礎となる進数変 換、ブール代数、論理関数、組み合わせ回路、順序回路について学ぶ。
授業の進め方・方法	教科書に則す形で解説した後、演習問題で理解度を確認しながら授業を進めていく。
注意点	演習問題の自習には、適宜取り組むこと。

授業計画

1X*II	7	Lym	Issue I de	
		週	授業内容	週ごとの到達目標
		1週	進数変換(1)	整数の進数変換を行うことができる。
前期		2週	進数変換(2)	小数の進数変換を行うことができる。
		3週	符号体形(1)	BCD符号について理解する。
	1stQ	4週	符号体形(2)	パリティチェック、チェックサム方式について理解す る。
		5週	論理演算(1)	集合論とベン図について理解する。
		6週	論理演算(2)	ド・モルガンの法則を適用することができる。
		7週	演習(進数変換・符号体形・論理演算)	これまでの復習を行う。
		8週	中間試験	
前期		9週	論理関数(1)	ブール代数に関する計算を行うことができる。
		10週	演習(進数変換・符号体形・論理演算)	論理記号について理解する。
		11週	簡単化(1)	カルノー図により、論理回路を簡単化することができる。
	2ndQ	12週	簡単化(2)	カルノー図により、乗法形を簡単化することができる。
		13週	簡単化(3)	Q-M法により、論理回路を簡単化することができる。
		14週	演習(論理関数・簡単化)	これまでの復習を行う。
		15週	期末試験	
		16週		
		1週	組み合わせ回路(1)	AND-OR構成、NAND構成、NOR構成について理解する。
		2週	組み合わせ回路(2)	半加算器を設計できる。
		3週	組み合わせ回路(3)	全加算器を設計できる。
	3rdQ	4週	組み合わせ回路(4)	減算器を設計できる。
		5週	組み合わせ回路(5)	比較器を設計できる。
		6週	状態遷移図	状態遷移図について説明できる。
		7週	演習(組み合わせ回路・状態遷移図)	これまでの復習を行う。
後期		8週	中間試験	
		9週	フリップフロップ(1)	SR-FFについて理解する。
		10週	フリップフロップ(2)	T-FFについて理解する。
		11週	フリップフロップ(3)	JK-FFについて理解する。
	4thQ	12週	フリップフロップ(4)	FFの入力方程式を求めることができる。
		13週	フリップフロップ(5)	順序回路が設計できる。
		14週	演習(フリップフロップ)	これまでの復習を行う。
		15週	期末試験	

	16)	周							
モデルコス	^フ カリキュ [:]	ラムの学	習内容と到達	桂目標					
分類 分野		分野	学習内容	学習内容の到達目標			到達レベル	授業週	
専門的能力	分野別の専 門工学	電気・電子 系分野		整数、小数を2進数、10進数、16進数で表現できる。				3	
				基数が異なる数の間で相互に変換できる。				3	
				基本的な論理演算を	3				
			子 情報	基本的な論理演算を表現できる。	3				
				MIL記号またはJIS記号を使って図示された組み合わせ論理回路 を論理式で表現できる。				3	
				論理式から真理値表	3				
				論理式をMIL記号またはJIS記号を使って図示できる。				3	
評価割合									
	試験		 発表	相互評価	態度	ポートフォリオ	その他	合詞	
総合評価割合 10			0	0	0	0	0	100)
基礎的能力 60		0	0	0	0	0	60		
専門的能力 40			0	0	0	0	0	40	
分野横断的能力 0			0	0	0	0	0	0	