市立		 等専門学校	<u>></u>	開講年度	平成29年度 (2	0017年度)	坦	業科目	 解析学A	
		<u>לו דר ו ++ +</u>		删册十次	十/戏23千/支 (2	.017年/支)	12	* /17口	<u>対</u> +7/1 丁 木	
科目番号	-113712	0089				科目区分		一般 / 必修	X	
受業形態					単位の種別と単位数		履修単位: 2			
開設学科	学科 電気工学科				対象学年		3			
開設期		通年				週時間数		前期:2 後期:2		
教科書/教材	才	高専テ	高専テキストシリーズ 微分積分2、微分積分2問題集 上野 健爾(監				爾(監修)	監修) 高専の数学教材研究会(編) 森北出版		
旦当教員		安富 義	安富 義泰							
到達目標	Į									
を学ぶこと	:を目標に	、2変数関数 積分、極座 する。	女の極 標変換	値問題、 e						
ルーブリ	ック									
				里想的な到達レ/	標準的な到達レベルの目安			未到達レベルの目安		
評価項目1			糸、	級数・級数展開の概念が理解出来 、複雑な計算が出来る。		級数・級数展開の概念が理解出来 、基本的な計算が出来る。		5.	級数・級数展開の基本的な計算が 出来ない。	
評価項目2			1) 1	偏微分を理解し、偏導関数を用い た複雑な計算が出来る。		偏微分を理解し、偏導関数を用い た基本的な計算が出来る。			偏導関数を用いた基本的な計算が 出来ない。	
評価項目3				2重積分を理解し、2重積分の複雑 な計算が出来る。		2重積分を理解し、2重積分の基本 的な計算が出来る。		責分の基本	2重積分の基本的な計算が出来ない。	
学科の到	達目標	項目との	関係							
JABEE (c) 学習・教育	門標 C1									
教育方法	. 等									
工学基礎で方、偏微分			楚であ 微分・ こ関す	である数列の極限と級数の概念、関数のべき級数展開とその応用、テーラー展開・マクローリン展開の考え 分・全微分、2変数関数の極値問題、2重積分と累次積分、極座標変換を理解し、 目する基本的な計算能力を修得する。						
授業の進め	方・方法	: 題に取り	り組む	に数列の極限と 微分、2変数関 ことで学習内容 うことを期待す	『の定着をはかる。 征	のべき級数展開と 積分と累次積分、 各自が到達目標を	その応り 極座標 達成で	用、テーラ- !変換につい きるよう、!	-展開・マクローリン展開の考え方 Nて学習し、教科書や演習書の演習門 果題等を課す。事前学習および復習	
注意点		はコツ:	コツと	(Ⅱ、幾何、微分 : (反復) 復習を :成績に加味する	行うこと。分からカ	分学Ⅱの知識を必 ないことは数学教	要とす? !員まで!	るので、良 [、] 聞きに行くる	く復習をすること。授業で学ぶ事項 こと。春課題試験も定期試験と同等	
授業計画	Ī									
		週		内容			週ごと	の到達目標		
		1週	ガ1	′ダンス、春課匙	夏試験		ļ			
		2週	関数	めの展開(高次導		高次導関数の計算が出来、べき級数の収束半径が計 できる。				
		3週	関数	関数の展開 (べき級数の項別微分・項別積分)			べき級数の項別微分・項別積分が出来る。			
	1ctO	4週		関数の展開(マクローリン級数とマクローリン多項式 マクローリンの定理)				マクローリン級数とマクローリン多項式、マクローリンの定理を理解できる。		

授業計画	<u> </u>			
		週	授業内容	週ごとの到達目標
		1週	ガイダンス、春課題試験	
		2週	関数の展開 (高次導関数、べき級数)	高次導関数の計算が出来、べき級数の収束半径が計算できる。
		3週	関数の展開 (べき級数の項別微分・項別積分)	べき級数の項別微分・項別積分が出来る。
	1stQ	4週	関数の展開(マクローリン級数とマクローリン多項式 、マクローリンの定理)	マクローリン級数とマクローリン多項式、マクローリンの定理を理解できる。
		5週	関数の展開(マクローリン展開、オイラーの公式)	基本的な関数のマクローリン展開を理解し、オイラー の公式を用いた計算が出来る。
		6週	関数の展開(テイラー展開、関数の近似式)	テイラー展開を理解し、関数の近似計算が出来る。
		7週	関数の展開(関数の近似式、誤差の見積もり)	関数の近似計算の際の誤差の計算が出来る。
		8週	前期中間試験	
前期		9週	試験返却、問題解説、偏微分法(2変数関数とそのグラフ)	2変数関数を理解し、グラフを描くことが出来る。
前期		10週	偏微分法(2変数関数の極限値、連続性)	2変数関数の極限値の計算が出来、連続性を理解できる。
		11週	偏微分法(偏導関数)	偏導関数の計算が出来る。
	2ndQ	12週	偏微分法(第2次偏導関数、2変数関数の合成関数とそ の導関数)	第2次偏導関数の計算が出来、合成関数の導関数が計算 できる。
		13週	偏微分法(合成関数の偏導関数、接平面)	合成関数の偏導関数の計算が出来、接平面を求めるこ とが出来る。
		14週	偏導関数(全微分と近似)	全微分を理解し、全微分による近似が計算で出来る。
		15週	前期末試験	
		16週	試験返却、問題解説	
		1週	偏導関数の応用(2変数関数の極値)	2変数関数の極値を理解出来る。
		2週	偏導関数の応用(極値の判定法)	2変数関数の極値の判定法を用いて、極値を求めることが出来る。
/// HD		3週	偏導関数の応用(陰関数の微分法)	陰関数を理解し、陰関数の導関数を計算出来る。
後期	3rdQ	4週	偏導関数の応用 (条件付極値問題)	条件付極値を求めることが出来る。
		5週	2重積分(定義、累次積分)	2重積分の定義、累次積分法を理解できる。
		6週	2重積分(累次積分)	2重積分を累次積分法を用いて計算出来る。
		7週	後期中間試験	

きる。 。 。			
0			
<u> </u>			
2重積分を用いて重心を求めることが出来る。			