	京工業高等	等專門学	学校 開講年度 平	P成30年度 (2	2018年度)	授	業科目物性物	理化学		
科目基		104-	1		NDEZ/		声明 / 冷砂			
科目番号		017			科目区分 単位の種別と単位数		専門/選択			
授業形態 授業 開設学科 物質工学科					対象学年	<u> 早似</u> 级	履修単位: 1			
開設期後期				<u> </u>			5			
教科書/教	─────────────────────────────────────			週時間 」 三共出版 / 他に補助プリ						
担当教員		_	· 未希雄			一切ノウントで、旭丘町川する				
到達目		17 73	C PICTISIALE							
物質の理解する		性質 : 電 の目標で 解したこ	気伝導性、誘電性、光学的 ある。これらの物性には相 とになる。]性質などの起源]互に関係してい	、その定量的な るものが少なく	える ない。そ	よびこれらの性質を のことに気づくこと	利用したデバイスについて ができれば、本科目の内容		
ルーブ	リック		TM+D45+\70\7.	1			W 0.05	+제소나 아니 아무슨		
			理想的な到達レベルの目安				いの目安	未到達レベルの目安		
電子構造			右記に加えて、エネルギーの単位変換、エネルギーと 等価な光の振動数、温度と の間の数値変換ができる。	・絶縁体のバ いを説明でき	金属・半導体ンド構造の違る。バンドギルミ準位を説	ド構造の違 分子軌道図を描る 。バンドギ 合定数を求める。		金属・半導体・絶縁体のバンド構造の違いを説明できない。		
電気伝導性(熱的性質含む)			右記に加え、直接型・間接型半導体の違いを説明できる。 固体のイオン伝導とれた利用したデバイスについて説明できる。	★ 右記に加え、そ 度、電気伝導	キャリア移動 率など関係す ができる。	固体を電気伝導性により分 類できる。 半導体の電子構 造を説明できる。		固体の電気学的性質の説明 ができない		
誘電性			右記に加え、誘電性関数諸 量を数式を用いて表すこと ができる。	を利用したデ 動作原理につ る。	固体の誘電性 バイスとその いて説明でき		分極の種類及び誘 類ができる。	固体内の分極の種類及び誘 電体の分類ができない。		
光学的性質			右記に加え、光学現象を利用したデバイスとその動作原理について説明できる。 は雑な光学現象について説明できる。 はいて説明できる。	F 右記に加え、 式を用いた定	光学現象を数 量的な表現が		じる様々な光学現 を説明できる	固体の光学現象を説明できない		
学科の	 到達目標 []]	百日レ				I				
		タロこ								
教育方法	法寺					一世体のい	ᄆᆓᄥᇷᇿᆂᄱᇓᄼ	 もとに、物質の示す重要な		
概要		物性 ある	:のいくつかについて学習す :。	る。それぞれの ^は 	物性の側面から	物質を理	解し、物性に関する	知識を広げるための科目で		
授業の進	め方・方法		学の授業を基本とし、分野 アの利用は適宜行う。 定	ごとに説明と演 E期試験前などに	習を繰り返しな 授業内容の振り	がら進め)返りの時	る。 関連する研究 間を設ける。	咒トピックの紹介、マルチメ		
注意点		める 、微	科目は幅広い物性に関する ことが求められる。それ以 積分の知識は必要である。 で常に持参しておくこと。	外の分野におい 必要な知識は物	ても、積極的な 理化学IおよびI	:自学自習 Iに準じる	の態度は評価される	朝試験では関数電卓を使用す		
授業計	画									
		週	授業内容			週ごと	:の到達目標			
		1週	イントロダクション名	イントロダクション 復習 電子構造 1			校(物質工学科)カリキュラム内での本科目の位置づ を理解できる。 2原子分子の分子軌道のエネルギー を描き、その結合の結合定数を説明できる。 分子の 子構造を基に、固体の電子構造の成り立ちを説明で る。			
後期		2週	電子構造 2			エネル 変換か の違い	ギーと等価な光の拡できる。 金属・半さを説明できる。 が、 概念を説明できる。 バックを説明できる。 が、かんだい	辰動数、温度との間で数値の 導体・絶縁体などの電子構造 ンドギャップ・フェルミ準位		
	3rdQ	3週	電気的性質(電気伝導性) 1			、移動	電気伝導性による物質の分類ができる。 キャリア密原 、移動度、伝導率、抵抗率の間の関係式を用いて、相 互に値を求めることができる。			
		4週	電気的性質(電気伝導性	電気的性質(電気伝導性) 2			性半導体と不純物半導体の電子構造を説明できる。 接遷移・間接遷移の違いを説明できる。			
		5週	電気的性質(電気伝導性	性) 3		pn接合 応答を る。	合への光・電気の作用を説明できる。 半導体のと E利用した様々なデバイスの動作原理を説明でき			
		6週	電気的性質(電気伝導性	電気的性質(電気伝導性) 4 熱的性質		理を訪	固体のイオン伝導とそれを利用したデバイスの動作原 理を説明できる。 金属の電気伝導性と熱伝導性の関係 について説明できる。			
		7週	振り返りの時間				授業前半のまとめ、復習、問題の解説など			
		8週	中間試験	中間試験						
		9週	電気的性質(誘電性) 1	電気的性質(誘電性) 1			中間試験の解説 電気双極子モーメントと固体の分極を説明できる。			
	4thQ	10週	電気的性質(誘電性) 2	電気的性質(誘電性) 2			固体の分極の種類を説明できる。 誘電体の分類を設 できる。 コンデンサーの動作の説明ができる。			
	Tany	11週	電気的性質(誘電性) 3	電気的性質(誘電性) 3			誘電分散の説明ができる。 誘電体を用いたデバイ その動作を説明できる。			
		12週	固体の光学的性質 1				Lambert - Beer則を用いた光吸収に関する計算ができる。 電子遷移および振動遷移による光吸収の特徴を説明できる。			

		13週	固体の光学的性質 2				Snellの式およびFresnelの式を用いて光の屈折・反射 について説明できる。			
14週			固体の光学的性質 3				発光・その他の固体と光の相互作用による現象を説明 できる。			
		15週	振り	返りの時間			授業後半のまとめ、問題の解説など			
		16週								
モデルコアカリキュラムの学習内容と到達目標										
分類		分野		学習内容	学習内容の到達目標	<u> </u>			到達レベル	授業週
評価割合										
			試	験		レポート等	合計			
総合評価割合			80	0		20		100		
基礎的能力			80	0		20		100		
専門的能力			0			0		0		
分野横断的能力			0			0		0		