東京	工業高等	専門学校	5	開講年度	令和	□04年度 (2	2022年度)	ł	受業科目		学特論(2022年度以 生・2021年度以前入 科目)		
科目基礎	 				I			ı		1 3 13	7		
科目番号		0002						専門 / 選択					
授業形態		講義					単位の種別と	単位数	学修単位: 2				
開設学科		物質工学	学専攻				対象学年		専1				
開設期		前期	週時間数						2				
教科書/教	材	スライト	イド資料										
担当教員		井手 智	<u>仁</u>	- - -									
境負何を軽)基礎を理解 †算を行い, るようになる 怪滅すること	こかできる。	ようにな	ることを目	当す.						-, コンピュータを利用して電子分布, 光学特性などをことで, 研究開発段階の環		
<u>【ティノL</u> ルーブし		ノー及びSD	GS EU) F	対係】 テイノ	<u>/ U </u>	・ホリンー:(1), (2), (3), 5	SDGS: S	9, 13, 14,	15			
<u>ルーフ・</u>	190	∓⊞‡	目的ナバ列	 達レベルの[コ安	煙淮的+2到達	 レベルの目安	是低阳	 の到達レベ		未到達レベルの目安		
				理ポテンシャ					ポテンシャ		井戸型ポテンシャルと吸収		
量子力学の	に 予	基づき物質の吸収波長を 則できる			に基づき物質の吸収波長を 波長 予測できる でき			関係性につ		波長の関係性について説明 できない			
単純ヒユッ	純ヒュッケル法		単なコードを作成して単 ヒュッケル法の計算がで る		がで	炭素数4までの共役分子の 単純ヒュッケル法計算がで きる		エチレ法計算	エチレンの単純ヒュック 法計算ができる				
水素原子と	水素原子と一般の計算方法		素原子や 算方法に 説明する	, 一般の分 ついて式を ことができ	子の 用い る	水素原子や, 計算方法につ ことができる		計算方	子や、一般の 法について ことができ	既略を説	水素原子や,一般の分子の 計算方法について概略を説 明することができない		
コンピュータを利用した量 子化学計算		^{ノに軍} 算)		量を量子化 ³ エアを用い できる			の一部を量子 トウエアを用 とができる	で計算	学計算ソフ できる物理! ができる		量子化学計算ソフトウエア で計算できる物理量につい て説明ができない		
学科の到	達目標項	目との関	目係										
教育方法	等												
量子化学とその応用について学習する。前半では井戸型ポテンシャルからはじめ、単純ヒュッケル法 ウム原子、コンピュータを利用した量子化学計算について学習する。量子化学計算の手法としては分 関数法を紹介する。後半では量子化学計算ソフトウエアを用いて実際に化学反応や分子間相互作用な きるようになることを目標とし、計算結果をまとめたプレゼンテーションを実施する。 企業において量子化学計算を行っていた担当教員の経験を活かし、スライド資料を主に使って量子化 環業の進め方・方法						互作用などについて計算で							
授業の進め	方・方法	い, 埋角	#を深め	習として実際る. 本科目に 前提で授業を	は字修	甲位であるの	り, 既存の量子で, 量子論や各	・化学計算 ・回に必要	マー・気行で 算ソフトウコ 要な数学に関	エアを利用 アを利用 関する予習	したりして実際に計算を行 が必須である. また, 復習		
注意点		めて発え	をする. 🤄	発表は相互語	平価も	行う. 上記の	. 実際にコンピ 通り, 予習・復 興味がある系の	習が行れ	つれている前	前提で講義	算を行い, その結果をまと を進めるので, 必ず予習・ 		
授業の属	性・履修	を上の区が	}										
☑ アクティブラーニング		ング	☑ ICT 利		利用		□ 遠隔授業対応			☑実	祭経験のある教員による授業		
授業計画	<u> </u>												
		週	授業内	容					との到達目	_			
前期	1stQ	1週	シュレーディンガー方程						ド・ブロイの物質波を出発点としてシュレーディンガー方程式を構築できる。また,不確定性原理が量子化学において重要であることを理解する.				
		2週	井戸型ポテンシャル						井戸型ポテンシャルと化学の関連を理解する. また , その応用例を学ぶ.				
		3週	単純ヒュッケル法:エチ			「レンの計算		チレ	分子軌道法の概念, ヒュッケル法の概要を理解し, エ チレンについての計算ができるようになる. ブタジエンとシクロブタジエンのヒュッケル法計算を				
		4週				タジエンとシクロブタジエン		行い	行い、2つの分子の性質の違いについて理解する。 Pythonを用いたヒュッケル法計算によりイオン化ポテ				
		5週	単純ヒュッケル法:一般					ンシ	ンシャルや全n電子エネルギーなどを計算できる. Pythonを用いたヒュッケル法計算によりフロンティア				
		6週	単純ヒュッケル法:化学反応とヘテロ					軌道 水素	軌道理論に基づいた化学反応性の予測ができる. 水素原子の原子軌道について理解する。より一般化し				
		7週 	水素原子,一般の取り扱い(波動					. 電子相関について知る.					
		8週	密度汎関数法・計算機実 務			ミ験と環境負荷・計算化学の実 		* の環 務に	の環境負荷について説明できる.また,計算化学の実 務について説明ができる.				
	2ndQ	9週	熱力学諸量の計算方法・計算の実行と				結果の解釈(1)	おて	量子化学計算において熱力学諸量がどのように求められているかを説明できる. 量子化学計算で求まる熱力学量の解釈方法を説明できる.				
		10週	計算の実行と計算結果の解釈(2)					する	高精度な計算の実行方法、溶媒和の扱いについて理解する.				
		11週	計算の実行と計算結果の解釈			解釈(3)				量子化学計算の結果求まる分子軌道,電子分布などの解釈方法を説明できる.			

		12週 13週 14週 15週		味の	ある対象	その量	量子化学計算(1)		持続的発展の可能な社会の基盤となる化学反応・プログラインでは関する計算の文献調査を行い、興味があるものいて先行研究の結果を説明できる。また、計算計算できる。		
				興味のある対象の						 用, 光学特性 きる.	について計
						えの量	量子化学計算(3)		興味がある系について計算結果を処理し、所望の値を 求めることができる。また、これまでに修得した専門 知識を元に結果の位置づけができる。		
						ξ.			計算を行った対象に関する背景・興味を持った理由 ,計算手法を具体的に説明し,専門知識を元に計算 果の解釈を行うことができる.		
		16週	.6週 予(5 備日						
モデルコ	アカリキ	ユラ	ムの学	2習[内容と致	到達	目標				
分類	_	分	分野		学習内容		学習内容の到達目標			到達レベル	授業週
							熱力学の第一法則の定義と適用方法を説明できる。			5	前10,前 12,前13,前 14
							エンタルピーの定義と適用ア	5	前10,前 12,前13,前 14		
							化合物の標準生成エンタルと	5	前10,前 12,前13,前 14		
							エンタルピーの温度依存性を計算できる。			5	前10,前 12,前13,前 14
							内部エネルギー、熱容量の気	5	前10,前 12,前13,前 14		
専門的能力	分野別の 門工学	専 化系	学・生 分野	物	物理化学	!	熱力学の第二・第三法則の定義と適用方法を説明できる。 純物質の絶対エントロピーを計算できる。			5	前10,前 12,前13,前 14
										5	前10,前 12,前13,前 14
							化学反応でのエントロピー変	5	前10,前 12,前13,前 14		
							化合物の標準生成自由エネノ	5	前10,前 12,前13,前 14		
							反応における自由エネルギ- きる。	5	前10,前 12,前13,前 14		
							平衡定数の温度依存性を計算	5	前10,前 12,前13,前 14		
評価割合											
		試験			レオ		ペート 発表		相互評価	評価 合計	
総合評価割合		40			15		40		5	100	
基礎的能力		10			5		10		0	25	
専門的能力		30		5		25		0	60		
分野横断的能力		0		5		5		5	15		