		古明坐	が、明護な廃しび	+21/左座 /2	010左座)	+22	2*** 4 .N 🗀	小块		
	工業高等	専門子	学校 開講年度 平月	成31年度 (2	019年度)	技	業科目	丰导体	工学特論	
科目基礎	門有報	1			TAPE A		±00 / 12215			
		0011		科目区分		専門/選択				
授業形態		講義			単位の種別と	単位数	履修単位: 2			
			工学専攻	対象学年		専1				
開設期	1-1	前期	\ \ \ \	週時間数		4				
教科書/教	材	プリ:								
担当教員		永吉	<u> </u>							
到達目標			» ~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	n / n						
		で追い	ながら半導体技術の基礎を理	2解する						
ルーブリ	リック	1.		I					1	
			理想的な到達レベルの目安				ノベルの目安(可)		未到達レベルの目安	
評価項目1		:	期日までにレポートの内容 をまとめることができる	期日までにレポートの内容 をまとめることができる		レポートの内容をまとめる ことができる		期日までにレポートのをまとめることができ	別容をない	
評価項目2				20121932219 223						
評価項目3										
	達目標項	1月との	 D関係						•	
教育方法		<u>, </u>	- i- 4 PT							
<u> 教育カル</u> 概要	A 7J	坐道/		ボイマの構造コ	でその技術的	変遷を詳	 囲すス			
<u> M安</u> 授業の進め	カ方・方法	_	体の家明期がり最新干等体力 分野の教員が2回ずつ講義を		~ C CV)XXIIIII	ᆇᆖᆫᇝ	ل0. و 12−			
<u> 注意点</u> 注意点	,,, ,J/ <u>L</u>	IMIT.	/」」、ソフトポリ と口り ノ冊找で							
<u>任总点</u> 授業計画	 īī									
7又未可匹	<u> </u>	週	授業内容			油ブレ	 の到達目標			
		<u> </u>	37 37 7 3 4	信装器の発明と増幅器の必要性 盆石絵法			- ツゴ圧口伝			
		1週	ラジオ、通信装置の発明器、真空間		メ ユ	`				
		175	第二次大戦における電子 真空管の周波数限界から	² 戦の発達とレ- 5周休妻子の目ii	ーダー装置、 ちしへ					
			ベル研における固体素子							
		- VIII	育成技術の進化 (Ge,	Siの物性とゾー	シリファイニ	5				
		2週		グ技術) トランジスタ動作の発見 (PNダイオードの基本動作						
			BPトランジスタの基準	トプノンスタ動作の発見						
			トランジスタ構造の進化	✓ 成長型-合金	型-メサ型-プレ	/				
	1stQ	3,⊞	ーナー型 日本の状況 材料の見直し Geから	(酸化膜形成素らべ現る	対例) 在用いられてい	,				
		3週	る半導体の種類と特徴)	る半導体の種類と特徴)						
			プレーナートランシスタ ビー特許 (ICプロセス	プレーナートランジスタから集積回路への進化 キル ビー特許 (ICプロセス技術の基礎)						
		4週	アポロ計画から電卓応用 MOSデバイスの実用化、シ							
		7,53	ヤープの戦略 電卓戦争 (MOSトランジスタ解説)							
		5週		マイコンの発明 i4004からペンティアムへ 各種メ モリーの進化						
			モリーの進化 集積化技術の進化 (超純水、ステッパ、ボンディン							
前期		6週	グ技術、Si原料製造から	単結晶育成、研	結晶育成、研磨、ゲッタリ					
				ンング、配線技術、エピタキシャル成長、SOI 他)						
		7週	/ グ技術、Si原料製造から	集積化技術の進化						
			ンング、配線技術、工と	<u> ピタキシャル成</u> 長	長、SOI 他)					
		8週	集積化技術の進化 (起び技術 Si原料製造から	集積化技術の進化 (超純水、ステッパ、ボンディン グ技術、Si原料製造から単結晶育成、研磨、ゲッタリ						
		U JUST	グ技術、SI原料製造から単結晶育成、研磨、グッタリンング、配線技術、エピタキシャル成長、SOI他)							
		0.777	集積化技術の進化(起	2純水、ステック		· T				
	2ndQ	9週	グ技術、Si原料製造から ンング、配線技術、エビ							
			各種トレンドデバイス解							
			有機半導体の登場と大面	ī積デバイス技術	析、パワーデバ					
		10週	イス技術(LCD, 太陽智)		•					
			ムーアの法則の破たんと	/ ムーアの法則の破たんと産業構造変化 超LSI技術研究 プロジェクトとその後の各国 国家プロジェクトの変						
			プロンエクトとての後の	プロジェクトとその後の各国 国家プロジェクトの役 遷						
		11週	デバイス構造の多様化	(ナノ構造デノ	「イス、量子効	,				
			果デバイス、新メモリー	果デバイス、新メモリーデバイス、微細化・クロック 周波数高周波化の限界とCPUのマルチコア化、マルチ						
			ナッフ化と員通電極、ミ	チッフ化と員通電極、システムインハッケージとシス						
				テムオンチップ、インテルシリコンフォトニクス戦略 他)						
				(ナノ構造デリ	 (イス	,				
			果デバイス、新メモリ-	デバイス構造の多様化 (ナノ構造デバイス、量子効 果デバイス、新メモリーデバイス、微細化・クロック						
		12週	周波数高周波化の限界とCPUのマルチコア化、マルチ チップ化と貫通電極、システムインパッケージとシス							
			テムオンチップ、インラ	テムオンチップ、インテルシリコンフォトニクス戦略						
		4.200		他)						
		13週		課題 発表 課期 登事						
		14週		課題発表						
	L	15週	課題 発表							

	16週											
モデルコアカリキュラムの学習内容と到達目標												
分類	分類 分野		学習内容の到達目標				ノベル 授業週					
評価割合												
	試験	発表	相互評価	態度	ポートフォリオ	レポート	合計					
総合評価割合	0	20	0	0	0	80	100					
基礎的能力	0	20	0	0	0	80	100					
専門的能力	0	0	0	0	0	0	0					
分野横断的能:	カ 0	0	0	0	0	0	0					