	工業高等	専門学校	ξ	開講年度	令	和05年度 (2	023年度)	打	受業科目	材料力	学Ⅱ	
科目基礎	情報											
科目番号		0122					科目区分			専門 / 選択		
授業形態 講義			-1//5T				単位の種別と単位数		//2/2 / 12:	履修単位: 1		
開設学科 電子 開設期 前期			刊御工学科				対象学年	5 2				
教科書/教												
製料書/教材 JSMEデキストシリース 材料ガ子、丸善、Z 担当教員 永井 睦							1					
到達目標	<u> </u>											
(科目コー この科目に この科目の ①応力とび ②基本的な 60%(d1)	-ド:3157(は長岡高専の)到達目標と)ずみの概念 は負荷状態)教育目標(こ、成績評(なを理解し、 (引張り、)	の(D)。 価上の . 材料 王縮、	に作用する力 せん断、曲げ	りる。 到達目 と変形 等)(2	目標と長岡高専の の関係を理解す	する 30%(d1 こ生じる応力も	達目標と	上の関連を以		示す。 その計算方法を習得す	する
ルーブリ	ーック											
		理	想的な	到達レベルの	目安	標準的な到達	レベルの目安	最低限的	の到達レベル	の目安	未到達レベルの目安	
評価項目1			、材料にTF用する月C変 の関係を詳細に無綴して			応力とひずみ し、材料に作 形の関係を理	用する力と変	し、材料	ひずみの概念 料に作用する 係を概ね理解	うしと変	左記に達していない	•
評価項目2			圧縮、せん断、曲げ等 (において、材料に生じる)カおよびひずみの状態を が細に理解し、その計算方 耳			基本的な負荷: 、圧縮、せん)において、 応力およびひ: 理解し、その 得している	断、曲げ等 材料に生じる ずみの状態を	基本的な負荷状態(引張り、圧縮、せん断、曲げ等)において、材料に生じる応力およびひずみの状態を概ね理解し、その計算方法を概ね習得している			左記に達していない	•
評価項目3			用・設計における材料力 の適用、安全について詳			実用・設計に 学の適用、安 解している	おける材料力 全について理 学の適用 ね理解し		設計における 用、安全につ している	材料力	左記に達していない	0
学科の到	」達目標項	目との	関係									
教育方法	等											
材料力学は、外力が与えられたときに材料内部に生じる応力と変形(ひずみ)を扱う学問で 的な安全性を確保し、合理的な機械設計を行うために不可欠である。本講義では、構造解析の おける基本的な問題について、応力やひずみを求める方法を学び、強度設計を行うことがで 目標とする。 ○関連する科目:材料力学 I (前年度履修)、固体力学概論、レオロジー(次年度履修)							のモデリングや機械詞	役計に				
授業の進め	方・方法					等の演習課題を						
			基礎(カやモーメントのつりあい)および基本的な微分方程式の解法が基礎となる。また前年度履修の材料力学 - んだ内容を前提として授業が進められるため、これらを履修前に復習しておくことが望ましい。									
授業の属	性 • 履修			L ChilleCO	CJX	(7) 座のプルの	200, 21106			<u> </u>	<u>±600%</u>	
□ アクテ				」ICT 利用			□ 遠隔授業対	 对応		□実	 務経験のある教員によ	 る授業
			'				•			•		
授業計画	Ī											
		週	授業	内容				週ご	との到達目標	Ē		
	1stQ	1週	断面二次モーメントと断面係数					断面形状の圏 を理解する。	「面二次モ	ーメントと断面係数	の計算	
		2週	静定はりの応力とたわみ					静定はりの応力とたわみの応用問題を解くことができ				
前期		3週	はりの複雑な問題(1)				を理	不静定はりの重ね合せ法および重複積分法による解法を理解する。				
		4週	はりの複雑な問題(2)				積分	不静定はりの基本的な問題を重ね合わせ法および重複 積分法によって解くことができる。				
		5週	はりの複雑な問題(3)					SFD	クラペイロンの 3 モーメントの式による連続はりの SFD、BMDの解法を理解する。 クラペイロンの 3 モーメントの式による連続はりの基			
		6週		はりの複雑な問題(4)				本的	いていていていています。 いできる。 では、いていていていている。 では、いていていている。 では、いていていている。			·きる。
		7週		複雑な応力(1)				<u>、主</u>	はん断応力の意味と導き方を理解する。 られた条件における平面応力状態における主応力			
	2ndQ	8週	複雑な応力(2)					<u>、主</u>	・ 主せん断応力を計算できる。 2軸引っ張り応力および引っ張り、曲げ、ねじりによ			
		9週	複雑な応力(3)					る組	る組み合わせ応力を計算できる。			7100
		10週	はり	の不静定問題	が平面応力のま	とめ		第9週までのまとめを行う。				
		11週	エネ	エネルギー法				相反	ひずみエネルギーの意味と、カスティリアノの定理、 相反定理を理解できる。 カスス・ルス・クロア・ヤステアによってなずって			
		12週	-	ルギー法			ルギ・	カスティリアノの定理、相反定理によってひずみエネルギーから変形を計算できる。				
		13週	座压	•				柱の座屈を理解し、座屈荷重や応力を計算できる。 柱の座屈を理解し、座屈荷重や応力を計算できる。				
			座屈						柱の座屈を埋解し、座屈何里や応刀を計算できる。			
		15週	全体	のまとめ				0	,」」 マンハロロス C	ם אם איארנ -		ری ت⊤د.

期末試験 16週 17週:試験解説と発展授業 試験時間:80分 モデルコアカリキュラムの学習内容と到達目標 学習内容の到達目標 到達レベル 授業週 分類 分野 学習内容 不定積分の定義を理解し、簡単な不定積分を求めることができる 前2,前3,前 4,前10 前2,前3,前 微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 ことができる 4,前10 基礎的能力 数学 数学 数学 前2,前3,前 簡単な1階線形微分方程式を解くことができる。 3 4,前10 前2,前3,前 定数係数2階音次線形微分方程式を解くことができる。 3 4,前10 前2,前3,前 4,前5,前 6,前7,前 力のモーメントの意味を理解し、計算できる。 1 8,前9,前 10,前13,前 14 1 前5 偶力の意味を理解し、偶力のモーメントを計算できる。 前2,前3,前 4,前5,前 6,前7,前 着力点が異なる力のつりあい条件を説明できる。 1 8,前9,前10 エネルギーの意味と種類、エネルギー保存の法則を説明できる。 前11,前12 前2,前3,前 4,前5,前 6,前7,前 8,前9,前 10,前11,前 荷重が作用した時の材料の変形を説明できる。 1 12,前13,前 14 前2 応力とひずみを説明できる。 フックの法則を理解し、弾性係数を説明できる。 1 前1 許容応力と安全率を説明できる。 前15 両端固定棒や組合せ棒などの不静定問題について、応力を計算で 前3,前4,前 1 . きる。 5,前6,前10 線膨張係数の意味を理解し、熱応力を計算できる。 前9 前9 ねじりを受ける丸棒のせん断ひずみとせん断応力を計算できる。 1 丸棒および中空丸棒について、断面二次極モーメントと極断面係 力学 1 前9 数を計算できる。 軸のねじり剛性の意味を理解し、軸のねじれ角を計算できる。 1 前9 前2,前3,前 分野別の専 門工学 はりの定義や種類、はりに加わる荷重の種類を説明できる。 1 4,前5,前6 機械系分野 専門的能力 ____ 前2,前3,前 4,前5,前 はりに作用する力のつりあい、せん断力および曲げモーメントを 計算できる。 6,前10 前2,前3,前 各種の荷重が作用するはりのせん断力線図と曲げモーメント線図 4,前5,前 6,前10 を作成できる。 曲げモーメントによって生じる曲げ応力およびその分布を計算で 前2 き<u>る。</u> 各種断面の図心、断面二次モーメントおよび断面係数を理解し、 曲げの問題に適用できる。 1 前1 前2,前3,前 各種のはりについて、たわみ角とたわみを計算できる。 1 4,前5,前10 前7,前8,前 多軸応力の意味を説明できる。 1 9,前10 軸応力について、任意の斜面上に作用する応力、主応力と主せ 前7,前8,前 1 ん断応力をモールの応力円を用いて計算できる。 9,前10 部材が引張や圧縮を受ける場合のひずみエネルギーを計算できる 前11,前12 部材が曲げやねじりを受ける場合のひずみエネルギーを計算でき 前11,前12 カスティリアノの定理を理解し、不静定はりの問題などに適用で 前11,前12 機械材料に求められる性質を説明できる。 前15 引張試験の方法を理解し、応力-ひずみ線図を説明できる。 1 前15 硬さの表し方および硬さ試験の原理を説明できる。 1 前15 材料 脆性および靱性の意味を理解し、衝撃試験による粘り強さの試験 1 前15 方法を説明できる。 疲労の意味を理解し、疲労試験とS-N曲線を説明できる。 前15 前15 機械的性質と温度の関係およびクリープ現象を説明できる。 l 1 評価割合 試験 発表 相互評価 態度 ポートフォリオ その他 合計

総合評価割合	70	0	0	0	0	30	100
基礎的能力	0	0	0	0	0	0	0
専門的能力	70	0	0	0	0	30	100
分野横断的能力	0	0	0	0	0	0	0