長岡	工業高等	 専門学	校開講年度令和	 105年度 (2	023年度)	授	 業科目	材料化				
科目基礎			,		,	,						
科目番号	-112100	0062		科目区分				/ 必修				
授業形態		実験・	· 実習		単位の種別と	履修単位: 4						
開設学科		物質コ	□学科		対象学年	対象学年						
開設期		通年			週時間数	4						
教科書/教林	i		テキスト/参考図書 「続 実	いうために」(化	学同人)、「機器分析の手引き」(化学同人)							
担当教員	_	村上 i	能規,細貝 和彦,奥村 寿子,宮	田 真理								
到達目標												
この、科目は外のでは、この、このでは、このでは、このでは、このでは、このでは、このでは、こので	は長岡高専の 取育目標との 対対子調製技 対が利定法を で で で で で で で で で が に が に が に が に に に に に に に に に に に に に)教育目標)関連の側 を間に関連 と習得する 野液分野の 関連 を一般でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 でである。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 でき	順で示す。 重する知識の習得。16%(d3 る。17%(d3) ガスクロマトグラフィー、 実験で用いる機器分析法につ	の科目の到達目) 質量分析を習 いて演習を通りに方法と構造	导する。17%(c ごて理解する。 解析の手法を理	l3) 20%(d3) 解する。	, 10%(d3),	②走査	関連を、到達目標、評価の重 型電子顕微鏡(SEM)の原理を 里解する。10%(d3)			
ルーブリ	ック								_			
				標準的な到達			到達レベル		未到達レベルの目安			
高分子合成	実験 評価	項目	高分子微粒子調製技術に関 車する知識を習得している	高分子微粒子 連する知識を 。			粒子調製技 識を概ね習		左記に達していない。			
熱分析実験	評価項目	1 j	熱分析の原理を学習し、測 定方法と材料の熱特性を詳 細に理解している。	熱分析の原理 定方法と材料 解している。			原理を学習 材料の熱特 ている。		左記に達していない。			
分光光度計による溶液分析 、ガスクロマトグラフィー 、質量分析実験 評価項目			が光光度計による溶液分析 ガスクロマトグラフィー 質量分析の原理を学習し 測定方法と解析方法につ いて詳細に理解している。	分光光度計に、ガスクロマ、ガスクロマ、質量分析の、 、測定方法といて理解して	トグラフィー 原理を学習し 解析方法につ	、ガスク 、質量分 、測定方	計による浴 ロマトグラ 析の原理を 法と解析が 理解してい	ラフィー で学習し 可法につ	左記に達していない。			
機器分析演	習 評価項	目	材料分野の実験で用いる機 器分析法について演習を通 じて詳細に理解している。	材料分野の実 器分析法につ じて理解して	いて演習を通	器分析法	の実験で月 について選 理解してい	習を通	左記に達していない。			
機器分析実	寒寒 評価項	1月1 7	NMRの原理を学習し、測定 方法と構造解析の手法を詳 細に理解している。	NMRの原理を 方法と構造解 解している。	学習し、測定 析の手法を理	NMRの原 方法と構 ね理解し	理を学習! 造解析の引 ている。	」、測定 =法を概	左記に達していない。			
機器分析実験 評価項目2			SEMの原理を学習し、試料 こ対する観察手法を詳細に 里解している。	SEMの原理を に対する観察 ている。			理を学習し 観察手法を る。		左記に達していない。			
機器分析実験 評価項目3		1目3 し	原子吸光分析の原理を学習 し、測定方法と解析の手法 を詳細に理解している。	原子吸光分析 し、測定方法 を理解してい	と解析の手法			か手法	左記に達していない。			
学科の到	達目標項	ロレケ										
教育方法		<u> </u>										
概要		要な税 ○関連	を扱ううえで必要な機器分析 機器分析装置の利用法とデー 連する科目: 卒業研究(学科	夕解析法につい 5学年履修)、	ハて学ぶ。 物質工学実験	(学科5学:	年履修)					
授業の進め	方・方法	分析到	は子生を3つのグループに班別 長験の演習を行い、後半は35	ルいし、谷天殿 班で各実験を□	ラーマに対し (ーテーションし	レローテー レながら実	ンコンし ^が 施する。	&≒,ひ天/	施する。後期は、前半に機器			
注意点		機器分	分析実験:共同分析機器を利	用するので、	事前に操作方法:	を十分にヨ	里解してか	ら使用す	- ること。			
授業の属					Т							
□ アクテ	ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対	応		□実	務経験のある教員による授業			
14271K=1-	-											
授業計画		\m	1253114 1			\m - " ·	0 #IV+ :-					
		週	授業内容				の到達目標		エン いっ □			
前期	1stQ	1週	材料化学実験・前期のス		,	し、実	子夫級・F 験を安全に	当期の人な	アジュール・班分け等を確認 1るよう準備をする。			
		2週	【高分子合成実験】高分 ついての説明	製方法と評価に 高分子微粒子の調製			制製方法と	法と評価について理解する。				
		3週		【高分子合成実験】高分子微粒子の調集 【高分子合成実験】高分子微粒子の調集								
		4週	【高分子合成実験】高分				5分子微粒子の調製に関する理解を深める。					
		5週		作による微粒子調製のまとめ 【高分子合成実験】重合操作および高分				りの調製について理解する。				
		6週	【熱分析実験】熱分析測 順に関する説明	定装置の取り	吸い方と測定手	熱分析する。	熱分析測定装置の取り扱い方と測定手順についする。					
		7週		【光化学に関する実験】光化学に関する			光化学に関する分析測定装置による測定手順につい 理解を深める。					
		8週	【結晶構造に関する実験 決定に関する機器分析	は人材料の作製	とその結晶構造	材料の作製とその材料の結晶構造決定に関す 深める。			吉晶構造決定に関する理解を			

	_			
		9週	【微粒子表面に関する実験】微粒子の表面電位、吸着 機構に関する機器分析	微粒子の表面電位、吸着機構に関する機器分析につい て理解を深める。
		10週	【分光光度計による溶液分析】紫外-可視分光光度計 を用いた溶液分析 1	紫外ー可視分光光度計の取り扱い方と測定手順につい て理解する。
		11週	【分光光度計による溶液分析】紫外-可視分光光度計 を用いた溶液分析 2	溶液試料の調製と含有成分の定量分析について理解する。
	2ndQ	12週	【ガスクロマトグラフィー】ガスクロマトグラフィー を使用した揮発性成分の測定	ガスクロマトグラフィーを使用した揮発性成分の定性 分析、試料組成の解析
		13週	【質量分析】質量分析計を用いた揮発性成分の測定	質量分析計を使用した揮発性成分の定性分析、試料組 成の解析
		14週	前期実験まとめ・実験結果のプレゼンテーションの準備	前期実験結果についてまとめ、材料化学実験に関わる 周辺技術についても調べる。
		15週	前期実験まとめ・実験結果のプレゼンテーション	前期実験結果について発表を行う。
		16週	前期の実験総括と発展的内容の説明	前期の実験内容を整理し理解を深める。
		1週	【機器分析演習】演習全般の説明	機器分析演習全般の概要と取り組み方について理解す る。
		2週	IRに関する演習	IRに関する概要と解析手法を理解する。
		3週	分析機器に関する演習(グループワーク part 1)	材料化学分野で用いられる機器分析法の概要について 理解する。
	3rdQ	4週	分析機器に関する演習(グループワーク part 2)	材料化学分野で用いられる機器分析法の概要について 理解する。
		5週	NMRに関する演習 (part 1)	NMRに関する概要と解析手法を理解する。
		6週	NMRに関する演習 (part 1) ・演習のまとめ	NMRに関する概要と解析手法を理解する。
		7週	【機器分析実験】実験スケジュール・班分け等の説明	機器分析実験の概要と実験方法について理解する。
		8週	NMR (1) NMRの原理と測定方法の解説・試料の測定	NMRの原理と試料の測定方法について理解する。
後期	4thQ	9週	NMR (2) NMRの解析手法に関する解説と演習	NMRの測定方法と解析手法について理解する。
		10週	SEM(1)SEMの原理と観察方法の解説・試料の前処理と観察part 1	SEMの原理と試料の前処理・観察方法について理解する。
		11週	SEM (2) SEMの原理と観察方法の解説・試料の前処理と観察part 2	SEMの原理と試料の前処理・観察方法について理解する。
		12週	原子吸光分析(1)原子吸光分析装置の原理と試料準備	原子吸光分析装置の原理と測定方法について理解する。
		13週	原子吸光分析(2) 試料の測定とデータ解析	原子吸光分析装置の解析法について理解する。
		14週	機器分析実習のまとめ	機器分析について理解を深める。
		15週	レポートの全体評価と発展的内容の説明	レポートの確認と本科で学んだ機器分析技術について 理解を深める。
		16週		

モデルコアカリキュラムの学習内容と到達目標

分類	分類 分野		学習内容	学習内容の到達目標	到達レベル	授業週
				実験の基礎知識(安全防具の使用法、薬品、火気の取り扱い、整理整頓)を持っている。	3	前1,前2,前 3,前4,前 5,前6,前 7,前8,前 9,前10,前 11,前12,前 13,前14,前
				事故への対処の方法(薬品の付着、引火、火傷、切り傷)を理解し、対応ができる。	3	前1,前2,前 3,前4,前 5,前6,前 7,前8,前 9,前10,前 11,前12,前 13,前14,前
基礎的能力	自然科学	化学実験	化学実験	測定と測定値の取り扱いができる。	3	前1,前2,前 3,前4,前 5,前6,前 7,前8,前 9,前10,前 11,前12,前 13,前14,前
				有効数字の概念・測定器具の精度が説明できる。	3	前1,前3,前 4,前5,前 6,前7,前 8,前9,前 10,前11,前 12,前13,前 14,前15
				レポート作成の手順を理解し、レポートを作成できる。	3	前1,前3,前 4,前5,前 6,前7,前 8,前9,前 10,前11,前 12,前13,前 14,前15
				ガラス器具の取り扱いができる。	3	前3,前4,前 7,前8,前 11,前12

					基本的なができる	実験器具に関して、	目的に応じて選択しī	Eしく使うこと	3		前3,前4,前 7,前8,前 11,前12
					試薬の調	製ができる。			3		前3,前4,前 7,前8,前 11,前12
					代表的な	無機化学反応により	沈殿を作り、ろ過がて	できる。	3		
					加熱還流	でよる反応ができる。	0		4		
					吸引ろ過	bができる。			4		
				有機化学実	再結晶に	よる精製ができる。			4		
			化学・生物 系分野【実験・実習能 力】	験	薄層ク□	マトグラフィによる	反応の追跡ができる。	,	4		
		削の工 検・実 コ			収率の計算ができる。						前3,前4,前 5,前14
声明的能力	分野別の			分析化学実験	分析がで	陽イオンおよび陰イオンのいずれかについて、分離のための定性 分析ができる。					
専門的能力	習能力				代表的な、液クロ X線回折 表的ない 析までの	代表的な定性・定量分析装置としてクロマト分析(特にガスクロ、液クロ)や、物質の構造決定を目的とした機器(吸光光度法、 X線回折、NMR等)、形態観察装置としての電子顕微鏡の中の代 表的ないずれかについて、その原理を理解し、測定からデータ解析までの基本的なプロセスを行うことができる。					前5,前7,前 8,前9,前 10,前11,前 12,前13,前 14,前15
					一必要な特	体、気体の定性・定 行定の分析装置に関し 察をすることができ	て測定条件を選定し、	分析等に関して 得られたデー	4		前5,前7,前 8,前9,前 10,前11,前 12,前13,前 14,前15
評価割合											
		前期	; 高分子合成	前期;熱分化学、結晶 微粒子表面 (レポート	5実験 (1)	前期;分光光度計による溶液分析、 ガスクロマトグラフィー、質量分析 実験(プレゼンテーション	後期;機器分析演習(レポート)	後期;機器分析実験(レポート)		合計	
総合評価割合 16			17		17	20	30		100		
基礎的能力 0		-		0		0	0	0		0	
専門的能力		16		17		17	20	30		100	
				0		0	0	0		0	