	がませい		開講年度	1311100 172 (2023年度)	1文:	業科目 物理:	, 110		
科目基礎	当有轮	Ta			Taue- o	 1				
科目番号					科目区分	N//! ""	専門/選択			
受業形態		講義				単位数	履修単位: 1			
開設学科		物質工学	7科	対象学年			5			
開設期		後期	週時間数				2			
教科書/教	材	プリント配布/参考書 基礎電磁気学 山口晶一(電気学会)					初等量子力学 島原鮮 (裳華房)			
旦当教員		田中久	仁彦							
到達目標	<u> </u>									
25%(c1)、	③数字を	16, 英語名 の教育目標の 学習・教育目 用いて物理	: Physics II B) D(C)と主体的に関れ 目標との関連の順で 現象を記述できる。	つる。この科目の到: 次に示す。①電磁気 50%(c1)。	達目標と、各到 は学の基礎を理解	達目標と長 する。259	岡高専の学習・ %(c1)、②量子力	教育到達目標との 」学の基礎を理解	関連を、到する。	
ルーブリ	リツク	T	- 日的もかいまし かりの		t who do	日が叩る		1 + 50.±1 .×11		
			思的な到達レベルの		をないないの目安		到達レベルの目安		の日女	
評価項目1		電 位。	滋気学の詳細を理解	96 電磁気子の多	基礎を理解する	電磁気子(する。	の基礎を概ね理解	左記に達して	いない。	
評価項目2		量。	子力学の詳細を理解	する 量子力学の基	基礎を理解する	量子力学のする。	の基礎を概ね理解	産記に達して	いない。	
評価項目3			里現象を記述する数 出できる	式を 数学を用いて 述できる	て物理現象を記	数学を用いる記述で	いて物理現象を概 きる	左記に達して	いない。	
 学科の到]達目標I	頁目との関	 {{							
<u>」 1100年</u> 教育方法		<u>, </u>	- ×1*							
概要 授業の進め)方・方法	一波動力 ○関連す	が理現象を表現する。 るマックスルの電磁 5程式の一般的な解 5る科目:物理学 I 3テキストに従って	を得る。 A・IB(4学年履 ^ん	修)、物理学Ⅱ,	4(5学年前	前期履修)、量子	物理(専攻科1学	年前期)	
		マックス	スウェルの電磁界方	程式により電磁波と	は何かを、シュ	レディンカ	ー リーの波動方程式	 により量子力学 &	とは何かを覚	
		ぶ。よっ	って微積分、三角関	数など基本的な数学	を身につけてい	ることが必	必要である。			
授業の属	性・履何	多上の区分)							
□ アクテ	ィブラーニ	ニング	□ ICT 利用		□ 遠隔授業対	付応		実務経験のある教	対員による授	
受業計画	Ī									
		週	授業内容			週ごとの	の到達目標			
		1週	電流と磁界Ⅰ ビ	磁界に	磁界に関して、ビオサバールの法則について理解する					
	3rdQ						0			
		2週	電流と磁界Ⅱ アンペアの周回積分				アンペアの周回積分について理解する。			
		3週	電流が磁界に及ぼす力			電流が磁界に及ぼす力について理解する。				
		4週	電磁誘導、変位電流			電磁誘導、変位電流について理解する。				
		5週	マックスウェル電	翼 マック:	マックスウェル電磁界方程式について理解する。					
			析							
		6週	マックスウェル電磁界方程式Ⅱ ベクトル解析							
		7週	マックスウェル電磁界方程式Ⅲ 微分型、電磁			マックスウェル電磁界方程式について理解する。				
		8週	中間試験			試験時間:80分				
	4thQ	9週	量子力学入門			量子力学の概要を理解する。				
		10週	量子数		量子力学の概要を理解する。					
		11週	LCAO			分子軌道結合法を理解する。				
		12週	光電効果、黒体放				量子力学の概要を具体例とともに理解する。			
		13週	シュレディンガー 井戸型ポテンシャ	波動方程式 I ル、トンネル効果		ル、ト:	シュレディンガー方程式について、井戸型ポテンシャル、トンネル効果の例題を解けるようになる。			
		L AND	シュレディンガー	<u>z</u>		水素原子の場合のシュレディンガー方程式の概要を理解する。				
		14週				解する。)			
	-	15週		方程式Ⅲ 調和振動				レディンガー方	程式の解を	
						調和振 める。 試験時 試験結!	動子の場合のシコ 間:80分 果を確認し、電磁	蒸気学の磁場・マ	クスウェル	
⊏ ="'। −]	15週	シュレディンガー 期末試験 17週:試験解説と	· 発展授業		調和振 める。 試験時 試験結!	動子の場合のシコ 間:80分 果を確認し、電磁	-	クスウェル	
	1アカリ=	15週 16週 キュラム <i>0</i>	シュレディンガー 期末試験 17週:試験解説と D学習内容と到達	· 発展授業 全目標	力子	調和振 める。 試験時 試験結!	動子の場合のシコ 間:80分 果を確認し、電磁	弦気学の磁場・マ 引して理解を深め	クスウェルる。	
	 アカリ=	15週	シュレディンガー 期末試験 17週:試験解説と	発展授業 全目標 学習内容の到達目	標	調和振 める。 試験時 試験結!	動子の場合のシコ 間:80分 果を確認し、電磁	弦気学の磁場・マ 関して理解を深め 到達レベル	クスウェルる。	
モデルニ	コアカリニ	15週 16週 キュラム <i>0</i>	シュレディンガー 期末試験 17週:試験解説と D学習内容と到達	発展授業 室目標 学習内容の到達目 電場・電位につい	加子 標 て説明できる。	調和振 める。 試験時 試験結!	動子の場合のシコ 間:80分 果を確認し、電磁	磁気学の磁場・マ 間して理解を深め 到達レベル 3	クスウェルる。	
分類		15週 16週 キュラムの 分野	シュレディンガー 期末試験 17週:試験解説と D学習内容と到達	発展授業 全目標 学習内容の到達目 電場・電位につい クーロンの法則が	が子 標 て説明できる。 説明できる。	調和振 める。 試験時 試験結 程式、	動子の場合のシュ 間:80分 果を確認し、電磁 量子力学入門に関	磁気学の磁場・マ 関して理解を深め 到達レベル 3 3	クスウェルる。	
分類		15週 16週 キュラムの 分野	シュレディンガー 期末試験 17週:試験解説と 0学習内容と到達 学習内容	全 発展授業 全目標 学習内容の到達目 電場・電位につい クーロンの法則が クーロンの法則か	が子 標 て説明できる。 説明できる。	調和振 める。 試験時 試験結 程式、	動子の場合のシュ 間:80分 果を確認し、電磁 量子力学入門に関	磁気学の磁場・マ 関して理解を深め 到達レベル 3 3	クスウェルる。	
分類 基礎的能力	〕 自然科学	15週 16週 キュラムの 分野	シュレディンガー 期末試験 17週:試験解説と 0学習内容と到達 学習内容	発展授業 全目標 学習内容の到達目 電場・電位につい クーロンの法則が	が子 標 て説明できる。 説明できる。	調和振 める。 試験時 試験結 程式、	動子の場合のシュ 間:80分 果を確認し、電磁 量子力学入門に関	磁気学の磁場・マ 別して理解を深め 到達レベル 3 3	クスウェル	
)類 基礎的能力	〕 自然科学	15週 16週 キュラムの 分野	シュレディンガー 期末試験 17週:試験解説と 0学習内容と到達 学習内容 電気	全 発展授業 全目標 学習内容の到達目 電場・電位につい クーロンの法則が クーロンの法則か	標 て説明できる。 説明できる。 ら、点電荷の間	調和振 める。 試験時 試験結 程式、	動子の場合のシュ間:80分 果を確認し、電磁量子力学入門に関	磁気学の磁場・マ 別して理解を深め 到達レベル 3 3 3 3	クスウェルる。	
)類 基礎的能力 平価割合	」 自然科 ⁴	15週 16週 キュラムの 分野	シュレディンガー 期末試験 17週:試験解説と D学習内容と到道 学習内容 電気	全 発展授業 全目標 学習内容の到達目 電場・電位につい クーロンの法則が クーロンの法則か	標 て説明できる。 説明できる。 ら、点電荷の間 期末試験	調和振 める。 試験時 試験結 程式、	動子の場合のシコ間:80分果を確認し、電磁量子力学入門に関する。 ・静電気力を求め ・合計	磁気学の磁場・マ 間して理解を深め 到達レベル 3 3 3 3	クスウェル	
	自然科 [:]	15週 16週 キュラムの 分野	シュレディンガー 期末試験 17週:試験解説と 0学習内容と到達 学習内容 電気	全 発展授業 全目標 学習内容の到達目 電場・電位につい クーロンの法則が クーロンの法則か	標 て説明できる。 説明できる。 ら、点電荷の間	調和振 める。 試験時 試験結 程式、	動子の場合のシュ間:80分 果を確認し、電磁量子力学入門に関	磁気学の磁場・マ 間して理解を深め 到達レベル 3 3 3 3	クスウェル	

専門的能力	30	30	60
分野横断的能力	0	0	0