富山高等専門学校			開講年度	令和04年度 (2	2022年度)	授	業科目	熱力学Ⅱ			
科目基礎	楚情報										
科目番号		0103			科目区分		専門/選	·択			
授業形態		授業			単位の種別と単位数 学修単位: :			2			
開設学科		機械シス	テム工学科	対象学年		4					
開設期		後期		週時間数 2							
教科書/教	材	JSMEテ	キストシリーズ 熱	力学(日本機械学会	2)						
担当教員		白川 英観	見								
ーの変換を 本授業で(, 利用でき	エンジンやす ある. 一方, 方法や動作! は, 熱エネ! きること, で	京理をまとめ	た学問である.					と力学的エネルギー(仕事)に変換す 5る. 熱力学では, これらのエネルギ 後やヒートポンプのサイクルを理解し			
ルーブリ	<u> </u>				_						
			理想的な到達レイ	理想的な到達レベルの目安			安	未到達レベルの目安			
熱機関を調	説明できる.		熱から仕事を得る熱機関を詳細に 説明できる.		サ熱から仕事を得る熱機関を説明 できる.			熱から仕事を得る熱機関を説明できない.			
冷凍機. l る.	ヒートポン	プを説明でき	仕事から熱を得る冷凍機. ヒートポンプを詳細に説明できる.		仕事から熱を得る ポンプを説明で		. ヒート	仕事から熱を得る冷凍機. ヒートポンプを説明できない.			
	サイクルを ⁵ を説明できる	理解し, エク る.	カルノーサイクルを理解し, エク カルノーサイクルを理 セルギーを詳細に説明できる. カルノーサイクルを理			罪し, エク	カルノーサイクルを理解し, エクセルギーを詳細に説明できない.				
ギブス関数 を理解し, る.	数などの自6 化学反応数	由エネルギー 熱を計算でき	ギブス関数などの を理解し, 化学 算できる.	の自由エネルギー 豆応熱を正確に計	ギブス関数などの自由エネルギー を理解し, 化学反応熱を計算でき る.		ー ネルギー 計算でき	ギブス関数などの自由エネルギー を理解し、化学反応熱を計算でき ない.			
ガスサイ? , 効率を3	クルを理解 (求めること)	し,熱と仕事 ができる.	ガスサイクルを が 対率を正確に る.	理解し,熱と仕事 求めることができ	ガスサイクルを理解し, 熱と仕事 , 効率を求めることができる.		熱と仕事 ごきる.	ガスサイクルを理解し, 熱と仕事 , 効率を求めることができない.			
湿り蒸気を 求めること	を理解し, 草 とができる.	乾き度などを	湿り蒸気を理解し、乾き度などを 正確に求めることができる.		き度などを	湿り蒸気を理解し、乾き度などを 求めることができない.					
蒸気サイク	クルを理解し 求めることが	し,熱と仕事 ができる.	蒸気サイクルを理解し,熱と仕事 ,効率を正確に求めることができ る.		蒸気サイクルを理解し,熱と仕事 ,効率を求めることができる.			蒸気サイクルを理解し, 熱と仕事 , 効率を求めることができない.			
複合サイク	クルを説明 ⁻	できる.	複合サイクルを記	複合サイクルを説明できる.			複合サイクルを説明できない.				
学科の登	到達目標項	頁目との関	 係								
JABEE 1(育到達度目标 (2)(d)(1) J マポリシー	ABEE 1(2)(e)								
教育方法	去等										
概要		一本地学下	/ナーダエフルモーを	・仕事に亦物する効	幽悶のサイクルや	/十里 /	ハムタエフ	「得られる熱エネルギーを力学的エネニネルギーなどを熱エネルギーに変換た学問である。 トルギーに変換する冷凍機やヒートポイクルを理解し、利用できることを目			
授業の進め	め方・方法	講義およ	び演習で実施する.	なお,授業計画は	, 学生の理解度に	応じて図	変更する場	<u></u> 合がある.			
注意点		熱エネル を示しな	ギーは直接に見るこ がら説明するが, 抽	とができないが, 1象的な表現や取扱	そのエネルギーに いが多いため, 自	よって 分の頭で	^{張々な機器} で現象をイ	器が作動する.授業では,実際の現象 /メージしながら学習してください.			
授業の属	属性・履修	多上の区分									
☑ アクテ	イブラーニ	ング	□ ICT 利用		☑ 遠隔授業対応			☑ 実務経験のある教員による授業			
授業計画	 §										
		週	授業内容			週ごと	の到達目				
	3rdQ	1週	授業計画説明, 熱と	受業計画説明,熱と仕事			理想気体の各種変化における熱と仕事を求めることかできる.				
		2週	熱機関					レにおける熱と仕事, 効率を求めるこ			
後期		3週	冷凍機, ヒートポン					逆カルノーサイクルにおける熱と仕事,成績係数をすることができる.			
		4週	エクセルギーと自由エネルギー, 化学反応熱				エクセルギー自由エネルギー尾を理解し, 化学反応熱 を求めることができる.				
		5週	ガスサイクル(1)				オットーサイクル,ディーゼルサイクル,サバテサイクルを説明できる.				
		C'H	₩▽ <i>本</i> 超 1				カルノーサイクル、ガスサイクル、化学反応熱の問題				

6週

7週

8週

9週

10週

11週

4thQ

総合演習 I

中間試験

中間試験解答解説

ガスサイクル(2)

蒸気サイクル(1)

蒸気サイクル(2)

カルノーサイクル, ガスサイクル, 化学反応熱の問題 を解くことができる.

ブレイトンサイクル, ブレイトン再生サイクルを説明 できる.

ランキンサイクル,再熱ランキンサイクルを説明でき る.

湿り蒸気, 乾き度などを説明できる.

		12週	蒸	蒸気サイクル(3)			再生ランキンサイクルを説明できる.				
		13週	複ラ	複合サイクル ランキンサイクル			ガスサイクル+ランキンサイクルの複合サイクルを記明できる.			イクルを説	
		14週		総合演習 Ⅱ				ガスサイクル,蒸気サイクルの問題を解くこと る.			ことができ
		15週	週 期末		未試験						
		16週	期	末試	験解答解説						
モデルコアカリキュラムの学習内容と到達目標											
分類 分野				<u>ب</u> د ت	学習内容	学習内容の到達目標				到達レベル	授業週
						等圧変化、等積変化、等温変化、断熱変化、ポリトロープ変化の 意味を理解し、状態量、熱、仕事を計算できる。				4	
 専門的能力	分野別の 門工学	専機	幾械系分!	野	熱流体	サイクルの意味を理解し、熱機関の熱効率を計算できる。			4	後1	
	二十十					カルノーサイクルの状態変化を理解し、熱効率を計算できる。			4		
						サイクルをT-s線図で表現できる。				4	
評価割合											
試験							課題合計				
総合評価割合 70					<u>'</u>		30 100				
基礎的能力				70			30 100				