富	山高等	事門学校	開講年	度 平成29年度 (2	2017年度)	授業科目	機械力学 I		
科目基础						· · · · · · · · · · · · · · · · · · ·			
科目番号 0251					科目区分	専門 / 選	 択		
授業形態		授業			単位の種別と単位				
			 引御システム工学科	システムT学科		4			
開設期後期			3,4,2,7,2,4,1,1	or or the administration of the second		2			
				 真功 著「わかりやす					
担当教員	۲۰۱۰۶	浦風:		<u> </u>	C (C C (M () S ()				
= <u></u> 到達目	····	/HJ/_W	тын						
		+F=#\/= +\/ + -	7.用车把制料 "战克	ルー は京田左に動物の					
日田及 泉形微分 ラグラン	系の自由 方程式の ジェの連	振動にありる 解法により, 動方程式に。	る回行振動数,減衰 一自由度系の振動 より基本的なシステ	比, 減衰固有振動数の 問題を解析できる. ムの運動方程式を導出	説明かできる. できる.				
ルーブ!	リック								
			理想的な到達	シベルの目安	標準的な到達レク	<u> </u>	未到達レベノ		
評価項目	1		一自由度系 <i>の</i> 有振動数,洞	一自由度系の自由振動における固 有振動数,減衰比,減衰固有振動 数の説明が適切にできる. 一自由度系の自由振 有振動数,減衰比, 数の説明が適切にできる. 数の説明ができる.		由振動における固 比,減衰固有振動	表動における固 一自由度系の自由振動における固 減衰固有振動 有振動数,減衰比,減衰固有振動		
評価項目:	2		自由度系の振できる.	武の解法により, 一 動問題を適切に解析	線形微分方程式の 自由度系の振動問 ・		線形微分方利 自由度系の扱い。	呈式の解法により, 一 辰動問題を解析できな	
評価項目:	3		ラグランジェ 基本的なシス 適切に導出て	の運動方程式により ステムの運動方程式を できる.	ラグランジェの選基本的なシステム 導出できる.	重動方程式により ムの運動方程式を	ラグランジ: 基本的なシブ 導出できない	ェの運動方程式により ステムの運動方程式を ハ.	
学科の	到達目	票項目との)関係						
教育方法	 去等								
既要		機械の生じる		的な理解を深め, モー て理解する	ターやエンジンなる	どの原動機をはじ	めとする種々 <i>0</i>	D機械が作動した時に	
受業の進	<u> </u>			C- <u>+</u> ++ 5 0:					
主意点	~ <i>~</i> //J · //J		<u> </u>						
^{ェ恩点} 授業計画	西	JÆLLI17	MIQANIX にこめてて	•					
又未可以	<u> </u>	週	極業中空		Т	田ブレクシャウェ			
後期		迴	授業内容			週ごとの到達目標 シラバスの説明,機械力学の概要			
	3rdQ	1週	概要説明			シラハスの説明,機械刀子の概要 自由度、運動方程式、力学モデル			
		2週	 静力学,動力学の復習			基本的な静力学、動力学の問題が解ける			
		3週	一自由度系の自			不減衰自由振動の固有振動数を説明できる			
		4週	一自由度系の自			減衰自由振動の減衰比、減衰固有振動数を説明できる			
		5週	一自由度系の自		線形微分方程式の解法により振動問題を解析できる				
		6週	一自由度系の自		固有値問題により線形微分方程式を解くことができる				
						実固有値, 複素固有値を持つ場合の時間解が導出でき			
		7週	一自由度系の自由振動			美国有他, 後条回有他を持つ場合の時间解が得出しる。			
		8週	中間試験			一自由度系の振動における自由振動の解析ができる			
		9週	力学的エネルギ	力学的エネルギー			力学的エネルギーの概念を説明できる, 運動方程式からエネルギーを導出できる		
		10週	ラグランジェの	運動方程式の導出		エネルギーから運動方程式を導出できる 機械系と電気系のアナロジーを説明できる			
		11週	二自由度機械系並進運動			機械系並進運動の運動方程式を導出できる			
	411.0	12週	二自由度機械系回転運動			機械系回転運動の運動方程式を導出できる			
	4thQ	13週	機械系複合運動			機械系並進と回転の複合運動の運動方程式を導出できる			
		14週	電気回路への応用			モーターのシステムを記述することができる			
		15週	期末試験			ラグランジェの運動方程式を用いて機械系・電気系システムの運動方程式を導出できる			
		16週	答案返却			成績評価・確認			
<u>ーーーー</u> モデル。			の学習内容と到	 達日煙					
<u> </u>		ノ <u>イユ ノム</u> 分里		学習内容の到達目			피	達レベル 授業週	
		773	:」 子百內谷	ナロバ谷ツ封连日	/ /示		到	圧レ′ ソレ 仅未週	
評価割る	ゴ	= 050	500. ±	10	45 ct	I_0 , · · ·	=mer	A-1	
		試験	発表	相互評価	態度	ポートフォリオ	+	合計	
総合評価割合		80	0	0	0	0	20	100	
基礎的能力		60	0	0	0	0	20	80	
専門的能力		20	0	0	0	0	0	20	
스 . 기마기 테닌.	, ,				+	<u> </u>		120	