	山高等専	門学校	<u> </u>	開講年度	平成28年度 (2	2016年度)	授	業科目	有機化学	V		
斗目基礎	情報											
斗目番号	目番号 0059					科目区分			専門 / 選択			
業形態		授業				単位の種別と単	位数	学修単位	: 1			
設学科		物質化学	学工学科			対象学年 5						
設期		前期				週時間数		1				
	科書/教材 高分子科学の基礎(化学同人)											
当教員		森 康貴										
刂達目標	Ē											
分子物質	質の特徴を記 質の各種合成 気応について	戈法が説明										
レーブリ	ーーー リック											
			理想	的な到達し	標準的な到達レベルの目安]安	未到達レ	ベルの目安			
高分子物質の特徴				子物質の特 る。	高分子物質の特徴についての知がある。				質の特徴につ	いての知識		
高分子物質の各種合成法				子物質の含している。	の知識がある。		の知識が					
3分子の反	応		高分る。					ついての知識があ 高分子の反応についての知識がない。			の知識がな	
きる		ヨロレの門				ا می ه			V 10			
		マロこの	対「木									
<u> </u>	寺	F	10 1- 2	+4-2	ラ 幸 八 ラ 1 10の・*・*	1545	·			- 1 - 1. II -	<u> </u>	
要		身の回り	りに多く(学習する。	をしまれていました。 また、学	る高分子材料がどの。 習の難易度が高いと	ようなモノで、ど 思われる反応速度	のよう	に合成され しては、ほ	し、そしてどは 閉を多く取	のような性質 り工室に解説	を持つかの する。	
業の進み	 b方・方法		<u>テロッツ。</u> よび演習	57C T	ー・ハル//JX/J □V 'C			J C 100 P	,,,,,, C.> \4X	ン 」 - 」 (□ / 1 + 1) 	, 0,0	
	-13 /3/14			えんやモノ	 マーの種類等、覚え	 る事項が多いだけ	でなく	 、平均分子		要論等で数式	<u></u> を駆使する	
意点	_	必要がる	ある科目で計画は、学	である。こと生の理解	マーの種類等、覚えれまでの科目と異な たででで変更する!	る点も多いので、 場合がある。	木朔点	があればそ	この都度遠慮	なく質問して	欲しい。ま	
受 業計画 週 週			授業内容				週ごとの到達目標					
	1stQ	1週	高分子物質とは何か? 高分子物質の分類 高分子化学を学ぶ意義				高分子物質の分類、高分子化学を学ぶ意義を理解す 。			を理解する		
		2週			連鎖重合と逐次重合	の違い	各種平均分子量の計算ができる。連鎖重合と逐次重合 の違いを理解する。					
		3週	ラジカル換基の	ル重合によ 効果	り合成される高分子	、重合手法、置	換基の効果を理解する。					
		4週			応、停止反応、連鎖		開始反応、生長反応、停止反応、連鎖移動反応を理解する。					
		5週			反応速度式の導出と		素反応に基づいた反応速度式の導出ができる。					
		6週	共重合の意義、ラジカル共重合の速度論				共重合の意義、ラジカル共重合の速度論を理解する。					
		7週	モノマ・	-反応性比 - 交互共重	、アゼオトロープ共 i全体	重合体、理想共	モノマー反応性比、アゼオトロープ共重合体、理想共 重合体、交互共重合体を理解する。					
		8週	重合体、交互共重合体 アルフレイープライスのQ,e-則				里口体、父母共星口体を理解する。 アルフレイープライスのQ,e-則を理解する。					
前期	2ndQ				<u>・イへのQ,e-gi</u> 反応と特徴、リビン	 グアーオン <u></u> 重合	各種イオン重合の反応と特徴、リビングアニオン重					
		9週	の速度	-/ -	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- / 一/1 / 王口 	の速度論を理解する。					
		10週	Ziegler チシチ		某、Kaminsky触媒、	ポリマーのタク	Ziegler-Natta触媒、Kaminsky触媒、ポリマーの チシチーを理解する。					
		11週	エーテ	レ等の開環	重合、メタセシス開	環重合	エーテル等の開環重合、メタセシス開環る。					
		12週	+ -		付加縮合による高分		重縮合、重付加、付加縮合による高分子物質の合成理解する。 電線会における反応速度式及び数平均公子書の道出					
		13週	演習		分子量の導出と -ルの合成 高	■ 重縮合における反応速度式及び数平均分子量の導出たできる。						
		14週	イオン交換樹脂及びポリビニルアルコ 分子の架橋反応			分子の架橋反応			., v , , v			
		15週	期末試験									
		16週	期末試験の解説									
デルニ]アカリキ	ニュラムの	の学習内	 容と到i	<u></u>					<u></u>		
<u>- / / / −</u> }類		分野		学習内容	<u>→ □ </u>					到達レベル	授業週	
		,,,,,,,,			重合反応について説明できる。			4	前1,前2,前 14			
専門的能力	公田又口山石	事ール学	. / - /-		重縮合・付加重合・重付加・開環重合などの代表的な高分子合成 反応を説明でき、どのような高分子がこの反応によりできている か区別できる。			4	前10,前 11,前12,前 13			
	」 分野別の 門工学)専 化学 系分野	野		ラジカル重合・カチオン重合・アニオン重合の反応を説明できる。			4	前3,前4,前 5,前6,前 7,前8,前9			
					ラジカル重合・カラ	チオン重合・アニ	オン重ね	 合の特徴を	:説明できる	4	前3,前4,前 5,前6,前 7,前8,前9	

評価割合										
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合	100	0	0	0	0	0	100			
基礎的能力	50	0	0	0	0	0	50			
専門的能力	30	0	0	0	0	0	30			
分野横断的能力	20	0	0	0	0	0	20			