| Toyama College | Year | Course | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Information | Applied Physics I | | |
| Course Code | 0075 | Course Category | Specialized／Elective |
| Class Format | Lecture | Credits | School Credit： 1 |

Assigned Department Objectives

ディプロマポリシー 3

Teaching Method

Outline	Learning Objectives（Aim of Class）（Educational Objectives）A3，B1 Physical thinking is fostered by introducing a mathematical description of physical phenomena，taking into account the continuity of contents up to the second year．The purpose of the previous phase is to focus on dynamics and to deepen the theoretical and practical understanding and application of the phenomena in nature．To develop the ability to explain the phenomenon as a tool for mathematics，a problem exercise and a small test are carried out．
Style	Lectures by teachers alone are conducted．
Notice	The portfolio is evaluated as 20\％，and the test is evaluated as 80% ．The evaluation of the test is the average of the evaluation of the interim and the end of the study．A person who has a rating of less than 60 points may be subjected to an approval test by a request．As the result of the approval test，the evaluation is made to be 60 points in the person who the mastery of the unit is recognized．

Characteristics of Class／Division in Learning

	8th	Midterm exam			Can solve range of dy motion and	blem by s, focus onserva	on the basic e equation of of energy.
	9th	Mechanics of a point system : Momentum conservation law			Can solve collision problems by using the momentum conservation law on multi-system problems.		
	10th	Mechanics of a point system : Equation of motion of rotation			Can derive an equation of motion for a rotational motion introducing angular momentum		
	11th	Mechanics of a point system : Problem exercise			Can solve problems centered on the preservation of momentum.		
	12th	Rigid Mechanics : Equation of motion of a rigid body			Can derive the equation of motion of the rotation when the rigid body rotates by extending the equation of motion of the rotation of the quality point system.		
	13th	Rigid Mechanics : Moment of inertia			Can calculate the moment of inertia according to the shape of the rigid body.		
	14th	Rigid Mechanics: Rigid body exercise			Can solve the problem of describing the motion equation of the center of mass and the equation of motion of the rotation.		
	15th	Final exam			Can solve problems related to quality point system and rigid body.		
	16th	Return of answer sheets, explanation, class questionnaire, etc.			Evaluation and confirmation		
Evaluation Method and Weight (\%)							
	Examination	Presentation	Mutual Evaluations between students	Behavior	Portfolio	Other	Total
Subtotal	80	0	0	0	20	0	100
Basic Ability	80	0	0	0	20	0	100
Technical Ability	0	0	0	0	0	0	0
Interdisciplinar y Ability	0	0	0	0	0	0	0

