| Toyama College | | | Year 2022 | | | | Course
Title | | Applied Physics I | | |-----------------------------------|--|---|---|---------------------------------------|---|--------------------|---|--|--|--| | Course | Informa | tion | | | | | | | | | | Course Co | 0075 | | | | Course Catego | ry | Specializ | zed / Elective | | | | Class Format Lecture | | | | | | Credits | | School C | Credit: 1 | | | Department Departme
Engineerin | | | ent of Electronics and Computer | | | Student Grade | | 3rd | | | | Term | | First Sem | • | | | Classes per We | k | 2 | | | | Textbook | and/or | T II SC SCII | iestei | | | Telasses per VV | CIC | 1- | | | | Teaching | | | | | | | | | | | | Instructor | | Yoshii Yo | tsumi | | | | | | | | | | Objectiv | | | | | | | | | | | 1) Perceiv | ve the disp
velocity m | otion and is | elocity,
okinetic | and acce
motion | eleration of an ob
ov using calculus | | | | of the center of gravity and | | | Rubric | | | | | | | | | | | | | | | Ideal Level of Achievement | | | Standard Leve | of Acl | hievement | | | | | | | (Very Good) | | | (Good) | | | Achievement (Fail) | | | Evaluation | | Students can perceive the displacement, velocity, and acceleration of an object as a variable of time and can solve basic problems related to constant-velocity motion and isokinetic motion by using calculus almost perfectly | | | Students can perceive the displacement, velocity, and acceleration of an object as a variable of time and can solve basic problems related to constant-velocity motion and isokinetic motion by using calculus correcty | | y, and ject as a can solve ed to tion and | Students can't perceive the displacement, velocity, and acceleration of an object as a variable of time and can solve basic problems related to constant-velocity motion and isokinetic motion by using calculus | | | | Evaluation 2 | | | of ine
a rigio | nts can or
rtia on th
I body al | of inertia on the a rigid body co | ie basi | c shape of | | | | | Evaluation | | Students can solve fundamental problems related to rigid body motion described by the equation of motion of the center of gravity and rotation almost perfectly | | | Students can solve fundamental problems related to rigid body motion described by the equation of motion of the center of gravity and rotation correcty | | | Students can't solve fundamental problems related to rigid body motion described by the equation of motion of the center of gravity and rotation | | | | Assigne | d Depar | tment Ob | iective | :S | | • | | | • | | | | アポリシー 3 | | , | - | | | | | | | | Teachin | g Metho | d | | | | | | | | | | Outline | a mather
second y
practical
phenome | Objectives (Aim of Class) (Educational Objectives) A3, B1 Physical thinking is fostered by introducing natical description of physical phenomena, taking into account the continuity of contents up to the ear. The purpose of the previous phase is to focus on dynamics and to deepen the theoretical and understanding and application of the phenomena in nature. To develop the ability to explain the non as a tool for mathematics, a problem exercise and a small test are carried out. | | | | | | | | | | Style | | | | | e are conducted | | |)O/ TI | | | | Notice | | of the ev | aluation
subjected | of the ir
d to an a | nterim and the er
approval test by a | nd of the study. A | perso | n who has
of the app | valuation of the test is the average s a rating of less than 60 points proval test, the evaluation is made | | | Charact | eristics of | of Class / | Divisio | n in Le | earning | | | | | | | ☐ Active | Learning | | □ Aid | ded by I | СТ | ☐ Applicable | to Rem | note Class | ☐ Instructor Professionally
Experienced | | | Course | Dlan | | | | | | | | | | | Course | . 1011 | - | Theme | | | | Goals | | | | | 1st
Semeste
r | 1st
Quarter | 1ct (| Guidance Fundamentals of Dynamic
Acceleration | | | nics : Speed and | Can express the relationship bet | | | | | | | 2nd I | Fundamentals of Dynamics : Law of motion | | | | Can explain Newton's laws of motion. By a mathematical description of the force, it is possible to construct a motion equation. | | | | | | | | Fundamentals of Dynamics : Solution of the equation of motion | | | | Can solve the equation of motion given by differential equations. | | | | | | | 4th I | Fundamentals of Dynamics : Problem e | | | olem exercise | dynar | Can derive and solve equations of motion in dynamical problems. | | | | | | 5th I | undamentals of Dynamics : Energy | | | | Can explain the relationship between work and kinetic energy and position energy. | | | | | | | | Fundamentals of Dynamics: Energy
aw | | | gy conservation | powe | Can explain the relationship between copower and position energy, and energy conservation law. | | | | | | | Mechani
problem | | oint system : Mu | lti-system | motio | Can describe the center of gravity and equation motion in a multi-system problem and can derive momentum conservation law. | | | | | | 8th | Midterm exam | | | Can solve the problem by focusing on the basic range of dynamics, focusing on the equation of motion and the conservation law of energy. | | | | |----------------------------|----------------|-------------|---------------------------------------|--|-----------------|--|-------|-------|--| | | | 9th | Mechanics of a po
conservation law | oint system : Mor | nentum | Can solve collision problems by using the momentum conservation law on multi-system problems. | | | | | | 2nd
Quarter | 10th | Mechanics of a poor | oint system : Equ | ation of motion | Can derive an equation of motion for a rotational motion introducing angular momentum | | | | | | | 11th | Mechanics of a po | oint system : Prol | olem exercise | Can solve problems centered on the preservation of momentum. | | | | | | | 12th | Rigid Mechanics :
body | Equation of mot | ion of a rigid | Can derive the equation of motion of the rotation when the rigid body rotates by extending the equation of motion of the rotation of the quality point system. | | | | | | | 13th | Rigid Mechanics : | Moment of inert | ia | Can calculate the moment of inertia according to the shape of the rigid body. | | | | | | | 14th | Rigid Mechanics : | Rigid body exerc | cise | Can solve the problem of describing the motion equation of the center of mass and the equation of motion of the rotation. | | | | | | | 15th | Final exam | | | Can solve problems related to quality point system and rigid body. | | | | | | | 16th | Return of answer questionnaire, etc | | ion, class | Evaluation and confirmation | | | | | Evaluati | on Me | thod and | Weight (%) | | | | | | | | E | | examination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal 80 | | 80 | 0 | 0 | 0 | 20 | 0 | 100 | | | Basic Ability | | 80 | 0 | 0 | 0 | 20 | 0 | 100 | | | Technical
Ability | |) | 0 | 0 | 0 | 0 | 0 | 0 | | | Interdisciplinar y Ability | |) | 0 | 0 | 0 | 0 | 0 | 0 | |