=	山克茨市	BB 2545	明寺左南	亚世20左南 /2	2017年底)	+\(\overline{\pi}\)	あっての			
	山高等専	门子仪	開講年度	平成29年度 (2	2017年度)	授業科目	電子回路			
科目基礎科目番号	的再牧	0111			利日区公	声明 / シ	li47			
授業形態					料目区分単位の種別と単位	専門 / 必 立数 履修単位				
開設学科		商船学科	1		対象学年	3	. 1			
開設期		前期	ı		週時間数	2				
教科書/教	 材	1.2.7.7.2		型 支編著 医歯薬出	1					
担当教員		八賀 正								
到達目標	<u> </u>									
電子機器は 、の基礎力 半導体電子	は私たちの回 つを身につい 子回路素子に -タハードウ	ける。 二関する基礎	を と技術を学	さび、実際に活用す	る能力の習得する		公仕組みで、どのように動いているか その構造や電気的な性質および用途に			
ルーブリ	 Jック									
			理想的な到達レ	ベルの目安	標準的な到達レヘ	バルの目安	未到達レベルの目安			
評価項目1			電子回路素子を構成するp形n形半 導体の特徴およびがpn接合につい て自律的に説明できる		電子回路素子を構成するp形n形料 導体の特徴およびがpn接合につい て説明できる		電子回路素子を構成するp形n形半 導体の特徴およびがpn接合につい て説明できない			
評価項目2	!		ダイオード・トランジスタの動作 原理について自律的に説明できる		ダイオード・トランジスタの動作 原理について説明できる		ダイオード・トランジスタの動作 原理について説明できない			
評価項目3			について自律的	ップフロップ回路 に説明できる	論理回路・フリッ について説明でき	ップフロップ回路 きる	論理回路・フリップフロップ回路 について説明できない			
		目との関	係							
教育方法	5等	<u> </u>								
概要	コンピュータハードウエアの基礎となるダイオード、トランジスタ、ICなどの電子回路素子について、その構造や電 概要 気的な性質および用途について説明する デジタルの基礎、論理回路、カウンタ回路(フリップフロップ)について例をあげながら説明していく									
授業の進め	か方・方法	○徹底しな要素を	,た基礎カアップのた 増加。	め, さらに演習問	題や小テストを強ん	化。○学問への興	眼と理解度を深めるため, 視聴覚的			
注意点	-	られた者 中間試験 3級海技	がいた。 にあっては、その診 送と前期末試験の結果 近土(航海)第1種船 近土(機関)第1種船	F価を60点とする 貝(90%)と授業 舶職員養成施設、娘	。評価方法及び評値 時間内外の演習・記 必要履修科目	記量準は本試験と 黒題(10%)を	追認試験の結果、単位の修得が認め に同じとする。 総合評価する。			
授業計画	<u> </u>	週	运		1.	ヨブレの到去口も				
		旭	授業内容			<u>週ごとの到達目楼</u> (1)シラバスの	。 D説明(2)導体と絶縁体のちょうど			
前期	1stQ	1週	半導体の性質			中間に位置する半導体を説明し、その元素として、シリコンやゲルマニウムがあることを説明する(3)原子の構造・共有結合、自由電子の発生について解説する				
		2週	半導体の種類			(1)単一の元素で構成される真性半導体に他の少量の元素を加えると電気的な性質が変化することについて解説する				
		3週	キャリヤ			(1) 電流には、電界によるものと、拡散によるものとがあることを解説する(2) 半導体中に発生した多数キャリヤと小数キャリヤについてその性質を解説する				
		4週	p n接合		:	(1) p形とn形半導体を接すると空乏層が発生する 理由について説明し、電気を通しにくくなる性質について解説する				
		5週	ダイオードと整流化	作用		(1) p n 接合の特性を利用した電子回路素子である ダイオードの特性、種類、利用法について解説する				
		6週	整流回路			(1) ダイオー $ $ について説明し、 について解説する) ダイオードを利用した半波整流・全波整流回路 いて説明し、交流電流から直流電流を得る仕組み いて解説する			
		7週	トランジスタの基2	ト構造と動作		したものである。レクタ間の電流の	ランジスタはp形n形の半導体を3層構造にであることを説明し、ベース・エミッタ・コの電流の流れ方について解説する(2)トラの電流増幅作用について解説する			
		8週	中間テスト			1回から7回まで 施。	回から7回までの講義内容について、中間試験を実			
	2ndQ	9週	トランジスタの静特性			(1) トランジスタを定量的に扱う上で最も重要なトランジスタの静特性について、その計測方法や各象限の電気的特性について解説する				
		10週	増幅機器			(1)電子回路の基礎である増幅回路を理解し、身近 な増幅回路(機器)について紹介する				
		11週	増幅の原理			(1) トランジスタの電流増幅作用を利用し、小さな 入力電圧を加えることによって大きな出力電圧を得る 仕組みについて解説する				
		12週	增幅回路			(1)基本増幅回路としてエミッタ接地増幅回路の増幅の原理について解説する(1)トランジスタを用いた増幅回路を設計するときに必要な負荷線や動作点について解説する(2)増幅特性の図解的理解法について解説する				

		13週	デジタルの基礎と記	アナログとデジタル して論理回路につい	アナログとデジタル、2値信号を処理するための基礎として論理回路について学ぶ						
		14週	カウウタ回路(フ!	フリップフロップ oいて学ぶ	フリップフロップという記憶する機能を持った回路に ついて学ぶ						
		15週	成績評価・確認	学期末試験の返却が	学期末試験の返却及び解答解説と授業アンケート						
		16週	期末試験			(1) 基本的な用詞 どうかを確認する 解し、活用できるか	吾を理解し (2)回路 か計算問題	ル、説明でき 8図から得ら 種によって確	る力があるか れる動作を理 認する		
モデルコアカリキュラムの学習内容と到達目標											
分類		分野	学習内容	学習内容の到達	目標		到達レベル	レ 授業週			
評価割合											
	試	験	発表	相互評価	態度	ポートフォリオ	課題	슫	計		
総合評価割	合 0		0	0	0	0	0				
基礎的能力	0		0	0	0	0	0 0				
専門的能力	9 ()	0	0	0	0	10				
分野横断的	能力 0		0	0		0	0				