| Toyama College | | Year 2022 | | | Course
Title | | on Mathematics
cs Application | | | |----------------------------|--------------------------------|---|---|--|---|--|--|--|--| | Course | Informa | tion | ' | | | | 1 7- | PP | | | Course Code 0020 | | | | | Course Categor | y Specia | Specialized / Elective | | | | Class Forr | Class Format Lecture | | · | | Credits | Acade | mic Credit: 2 | : Credit: 2 | | | Departme | Department Control In Course | | formation Systems Engineering | | Student Grade | Student Grade Adv. 1st | | | | | Term | | Second S | emester | | Classes per Week 2 | | | | | | Textbook
Teaching | | | | | | | | | | | Instructor | | Ito Nao | | | | | | | | | Course | Objectiv | es | | | | | | | | | transform | ١. | | | ansform and spec
ms using Fourier t | | | | • | | | Rubric | | | <u> </u> | | , , , | | | | | | | | | | | | Standard Level of Achievement | | Unacceptable Level of | | | | | | (Very Good) Can properly understand the | | (Good) | | | Achievement (Fail) Cannot understand the | | | Evaluation | า 1 | | definition and the nature of Fourier transform, Laplace transform and special functions, and can solve problems for application. | | Can understand the definition and the nature of Fourier transform, Laplace transform and special functions, and can solve fundamental problems. | | definition a
Fourier tra
transform | definition and the nature of
Fourier transform, Laplace
transform and special functions,
and cannot solve fundamental | | | Evaluation 2 | | | Can properly use mathematical techniques for physical problems in engineering field, can solve problems for application. | | Can use mathematical
techniques for physical
problems in engineering field,
can solve fundamental problem | | techniques
problems | e mathematical
s for physical
in engineering field,
ve fundamental | | | | | tment Ob | jectives | | | | | | | | ディプロマ
JABEE B1 | アポリシー E | 3-1 | | | | | | | | | | g Metho | d | | | | | | | | | Outline | g i ictio | Mathema | tics and physics | are important for | acquiring technic | cal knowledge | of engineering | . This course will | | | Outline | | focus on | exercise for calcu | ulating equations of | of mathematics a | and physics. | | | | | Style | | transform | n and special fun | students will learr
ctions through exe
o quantum mecha | ercises. In the ph | nysics part, st | udents will lear | er transform, Laplace
n about classical | | | Notice | | Instead of focus on questions should work the recognitions of | of memorizing the
understanding the
swhenever they
ork on exercise e
gnition of credit i | e mathematics and basic ways of the double mot understand ach class in the warequires 60 points | d the physics knowninking. Instead of something. Because of self-learning. | owledge, stud
of being pass
cause this cou | ents are encou | raged to study with
e expected to ask
exercise, students | | | Characteristics of Class / | | | Division in Learning | | T | | □ Instruc | stor Drofossionally | | | ☑ Active Learning | | | ☐ Aided by ICT ☐ ☐ Applicable | | Remote Clas | Experience | tor Professionally
ed | | | | Course | Dlan | | | | | | | | | | Course Plan | | - | -
Theme | | | Goals | | | | | 2nd
Semeste
r | 3rd
Quarter | 1st t | Guidance and rev
The lecture ma
to students. Stud
mathematics tha | idance and review for mathematics The lecture makes guidance about this course students. Students review knowledge of athematics that is needed for solving differential uations treated in this course. | | | Can solve differential equations treated in this course. | | | | | | 2nd | Students learn | urier transform (1)
Students learn the definition of Fourier series
pansion and how to calculate them. | | | Can explain Fourier series expansion and calculate its fundamental problems. | | | | | | 3rd | Students learn | ourier transform (2)
Students learn to solve partial differential
Juations using Fourier series. | | | Can solve partial differential equations using Fourier series. | | | | | | 4th | ourier transform (3)
Students learn the expansion from Fourier
Pries to Fourier transform. | | | Can explain the expansion from Fourier series to Fourier transform. | | | | | | | 5th f | ourier series and Riemann zeta function
Students learn the definition of Riemann zeta
nction and how to calculate particular values of
emann zeta function using Parseval's equation
at is from Fourier series. | | | Can explain the definition of Riemann zeta function, and can calculate particular values of Riemann zeta function using Parseval's equation that is from Fourier series. | | | | | | | 6th | | cise
udents work on exercises related to problems
a contents so far. | | | | | | | | | l7th l | aplace transform (1)
Students learn the definition of Laplace
ansform as expansion from Fourier transform. | | | Can explain the definition of Laplace transform as expansion from Fourier transform. | | | | | | | 8th | aplace transform (2)
Students learn how to calculate Laplace
ransform. | | | Can calculate Laplace transform for fundamental functions. | | | | | | | | | 7 | | | | | | |----------------------|---------|----------|---|---|------------------------------|--|--|-------|--| | | | 9th | Laplace transfor
Students lear | rm (3)
n Laplace inverse t | Car
verse transform. | | Can calculate Laplace inverse transform for fundamental functions. | | | | | | 10th | Laplace transform (4) Students learn how to solve differential equations using Laplace transform. | | | Can solve differential equations using Laplace transform | | | | | | | 11th | Laplace transfor
Students learn
equations from
using Laplace tr | rm (5)
n how to solve diffor
problems of enginoransform. | erential
eering field | Can solve differential equations from problems of engineering field using Laplace transform. | | | | | | 4th | 12th | Students lear
described from | rm and Gamma furn
n a formula of Gan
Laplace transform,
ular values of Gam | nma function
, and how to | Can explain the definition of Gamma function, and can calculate particular values of Gamma function. | | | | | | Quarter | 13th | Application of special functions to problems of physics Students learn to solve problems of physics using Riemann zeta function and Gamma function. | | | Can solve physics problems using Riemann zeta function and Gamma function. | | | | | | | 14th | Exercise Students work on exercises related to problems from Week 7 to Week 13. | | | | | | | | | | 15th | Exercise
Students worl
from Week 7 to | k on exercises rela
Week 13. | ted to problems | | | | | | | | 16th | Final Exam | | | | | | | | Evaluati | on Me | thod and | Weight (%) | | | | | | | | | E | | n Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal | | '0 | 0 | 0 | 0 | 30 | 0 | 100 | | | Basic Abil | ity 3 | 35 | 0 | 0 | 0 | 15 | 0 | 50 | | | Technical
Ability | | 35 | 0 | 0 | 0 | 15 | 0 | 50 | |