—————————————————————————————————————		専門学校	開講年度 令和03年度 (2	2021年度)	授業科目			
科目基礎		N.T. I.I.X	י) ארדייין אין דיינויין אין אין אין אין אין אין אין אין אין					
<u>17口坐员</u> 科目番号	CIH+K	20212		科目区分	専門 / 必修			
授業形態		講義		単位の種別と単位				
開設学科		電気工学	·····································	対象学年	4			
開設期		通年	TI	週時間数	2			
教科書/教	材		上郎 「詳解 電気回路演習 下」(共立出					
担当教員	1,2	河合 康邦		L/1/A/				
<u></u>	<u> </u>	7 1 100						
2. 四端子 3. 定K型 4. ひずみ 5. 微分方	子回路網を行 リフィルタ・ け波交流回い 可程式を用い フタ変換を原	−の基本が理 路の計算がで ハて回路の過	·夕で表現でき、計算できる。 2解できる。					
<i>// / /</i>	, , ,		理想的な到達レベルの目安	標準的な到達レベ	ルの目安	未到達レベルの目安		
評価項目1			三端子回路網の特性を関数から理解し、回路を合成することができる。	二端子回路網の特解できる。		二端子回路網の特性が理解できない。		
評価項目2			四端子回路網を十分に理解し,各種パラメータで計算することができる。	四端子回路網の中 パラメータを計算 る。		四端子回路網の中でどれもパラメ ータを計算することができない。		
評価項目3			定 K 型フィルターでフィルタの特性を理解でき、設計することができる。	定K型フィルタの し、計算すること		フィルタ回路の計算することがで きない。		
評価項目4			ひずみ波交流回路を理解し, 応用 的な問題を解くことができる	ひずみ波交流回路 的な問題を解くこ	を理解し, 基本 とができる	ひずみ波交流回路について理解し ておらず、問題が解けない		
評価項目5			回路方程式から微分方程式を用いて回路の過渡現象が理解でき,計算できる。	回路方程式を作る	ことができる。	微分方程式を解くことができる。		
評価項目6			回路方程式からラプラス変換を用いて回路の過渡現象が理解でき ,計算できる。	回路方程式をラブ することができる	ラス変換で変換 。	ラプラス変換を用いて微分方程式 を解くことができる。		
学科の到	達日標エ	頁目との関	係	•				
本科学習E	標1本科	学習目標 2	: プログラム B1専門(電気電子工学)					
教育方法	等							
概要		電気現象 修得する 電気工学	を理論的に理解し,電気工学を学ぶ上 ことを目的とする。また,二端子回路 を学ぶ上で必要な基礎学力を身につけ	で必要な学力を身に 網,四端子回路網, 、答案の作成等を通	つけ, 電気回路に フィルター, ひす びて課題解決に応	こおける工学的な課題の解決方法を ボみ波, 過渡現象について学習し、 5用できるようにする。		
授業の進め	方・方法	【関連科	後学習など】到達目標の達成度を確認 目】電気・電子計測 I , 電気機器 , 電 対応】V-C-1電気回路					
注意点		数学(三 【評価方 中間試験 前期末: 学年末:	予習・復習が大事です。 角関数、行列、微分方程式)の基礎知 法・評価基準】 、前期末試験、学年末試験を実施する 可試験(40%)、期末試験(40%) 後期(後期中間試験(40%)、基礎等 学力検査試験に合格しない学生は学年	'。 ' 、レポート(20% ど力検査試験(40%))) 、レポート、小	テスト(20%)と前期末の平均		
テスト	3.L4 ·							
		多上の区分		T				
□ アクテ	ィブラーニ	ニング	□ ICT 利用	☑ 遠隔授業対応		□ 実務経験のある教員による授業		
授業計画	<u> </u>							
		週	授業内容			ごとの到達目標		
前期	1stQ	 1週	 二端子回路網	0		数から特性を理解することができる 		
		2週	二端子回路網			を合成することができる。 を今成することができる		
		3週	二端子回路網		Cauer展開で回路を合成することができる。			
		4週	四端子回路網		インピーダンス行列, アドミタンス行列を求めること ができる。			
		5週	四端子回路網		ハイブリッド行列(H行列)を求めることができる。			
		6週	四端子回路網		伝送行列 (F行列, 四端子定数) を求めることができる			
		7週		о П	。 四端子回路の接続ができるようになる。			
		8週	四端子回路網 四端子回路網		四端子凹路の接続ができるようになる。 影像パラメータによる表示ができるようになる。			
		9週	フィルタ		影像ハフメータによる表示かできるようになる。 低域通過フィルタを理解して,構成できる。			
	2ndQ	10週	フィルタ		広域通過フィルタを理解して, 構成できる。 広域通過フィルタを理解して, 構成できる。			
		11週	フィルタ	1.				
		12週	フーリエ級数		一 市			
	L	工工四			ノーフエ歌奴で埋	サイログ。		

	1						1				
		13週	ひずる	み波交流			対称波, 奇関数波, 偶関数波の特性を理解できる。				
		14週	ひずる , 電		効値,波形率,波高 ³	率, ひずみ率	ひずみ波の実効値,波形率,波高率,交流電力を計算 できる。				
		15週	前期	復習		中間,期末試験の復習により理解度を深めることができる。					
		16週									
	3rdQ	1週	微分方程式,による過渡現象				RL回路の過渡現象を計算することができる。				
		2週	微分方程式,による過渡現象				RC回路の過渡現象を計算することができる。				
		3週	微分方程式,による過渡現象				RLC回路の過渡現象を計算することができる。				
		4週	微分方程式,による過渡現象				応用回路の過渡現象を計算することができる。				
		5週	ラプラス変換による過渡現象				ラプラス変換を理解することができる。				
		6週	ラプラス変換による過渡現象				RL回路の過渡現象を	を計算する	ることができる	5.	
		7週	ラプ	ラス変換による	る過渡現象		RC回路の過渡現象を計算することができる。				
		8週	ラプラス変換による過渡現象				RLC回路の過渡現象を計算することができる。				
後期		9週	交流	流回路の法則の復習		交流回路の法則で回路を解くことができる。					
		10週	誘導	回路, 共振回距	路, 三相交流回路の	復習	誘導回路, 共振回路, 三相交流回路の計算がで			ができる。	
	4thQ	11週	応用問題演習				応用された回路問題を解くことができる。				
		12週	応用問題演習				応用された回路問題を解くことができる。				
		13週	応用問題演習				応用された回路問題を解くことができる。				
		14週	基礎	科目学力検査	式験		基礎科目学力検査試験で基本知識を身につけることが できる。				
		15週	後期	復習		中間, 期末試験の復習によ		复習により)理解度を深めることがで		
		16週									
モデルー	- 1アカリキ	ニュラムの	学習	内容と到達	 		•				
分類	-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	分野		学習内容	5 5			到達レベル	授業週		
7374		72-2			直列共振回路と並列共振回路の計算ができる。			4	322132		
 専門的能力	→ 分野別 <i>の</i> フ 門工学	の専 電気・			RL直列回路やRC直列回路等の単エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。		4				
	门工子	系分野			RLC直列回路等の複エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。		4				
評価割合				•	•				•	•	
2 1 IM H J F	-		計	試験		ポートフォリオ		合計			
総合評価割合				80		20		100			
基礎的能力				-		0 0					
専門的能力)		20 100					
分野横断的能力				0		0 0					
ען עלטוניוואאַןיבּרע											