石川工業高等専門学校		開講年度	平成30年度 (2	1018年度)	授業科目	電子デバイス		
科目基礎情報								
科目番号	16960			科目区分	専門 / 必	修		
授業形態	講義			単位の種別と単位数	数 履修単位	履修単位: 2		
開設学科	電子情報工学科			対象学年	4			
開設期	通年			週時間数	2			
教科書/教材	大山英典,葉山清輝「半導体デバイス工学」(森北出版)							
担当教員	山田 健二							
까추모枥								

|到達目標

- 1. p形半導体とn形半導体を理解し、説明できる。
 2. 半導体中のキャリアの振る舞いを理解し、説明できる。
 3. キャリヤ密度を計算できる。
 4. エネルギー帯構造の概念を理解し、説明できる
 5. pn接合の特性を理解し、説明できる。
 6. バイポーラトランジスタの構造を理解し、説明できる。
 7. バイポーラトランジスタの動作について解析ができる。
 8. MOS構造について説明できる。
 9. MOS構造の解析ができる。
 10. MOSトランジスタの構造について説明できる。
 11. MOSトランジスタの動作について解析ができる。
 12. デバイス製作のプロセスを理解し、説明できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安		
到達目標 項目 1~5	pn接合について理解し説明できる	基本的なpn接合について理解し説明できる	基本的なpn接合について理解し説 明できない		
到達目標 項目 6, 7	バイポーラトランジスタを理解し 説明できる	基本的なバイポーラトランジスタ を理解し説明できる	基本的なバイポーラトランジスタ を理解し説明できない		
到達目標 項目 8~12	MOSトランジスタを理解し説明で きる	基本的なMOSトランジスタを理解し説明できる	基本的なMOSトランジスタを理解し説明できない		

学科の到達目標項目との関係

本科学習目標 1 本科学習目標 2 本科学習目標 3 創造工学プログラム A1 創造工学プログラム B1専門(電気電子工学&情報工学)

教育方法等

概要	電子デバイスは現在の情報化社会を支えるハードウェアの最も基礎的な学問分野である。授業では電子デバイスの動作 原理の基本を学び、基礎学力を身に付ける。そして,デバイス解析の手法を学び、課題解決に必要な能力を養う。
授業の進め方・方法	教科書に沿って進め、pn接合・キャリア・バイポーラトランジスタ・MOSFETについて学ぶ。 【事前事後学習など】到達目標確認のための演習課題を与える。 【関連科目】電磁気学 I 、II, 電子回路 I 、II, 数学
注意点	教科書の問題や与えられた演習課題をすべて解いておく。 数学(特に微分や積分)の基礎知識を理解している必要がある。 【評価方法・評価基準】成績の評価基準として60点以上を合格とする。 前期未評価:中間試験(40%)、期末試験(40%)、課題(20%) 後期末評価:中間試験(40%)、期末試験(40%)、課題(20%) 学年末評価:前期末評価(50%)と後期末評価(50%)

テスト

授業計画

技耒司				
		週	授業内容	週ごとの到達目標
		1週	半導体について	半導体の特徴を説明できる
		2週	エネルギー帯の考え方(1)	n形とp形を説明できる
		3週	エネルギー帯の考え方(2)	水素原子モデルを説明できる
	1 c+O	4週	キャリアの分布(1)	キャリアの分布と存在確率を説明できる
	1stQ	5週	キャリアの分布(2)	キャリアの分布を導出できる
		6週	キャリアの分布(3)	キャリア密度の変化を説明できる
		7週	キャリアの運動(1)	ホール効果を説明できる
前期		8週	キャリアの運動(2)	拡散電流について説明できる
日11分		9週	キャリアの運動(3)	拡散方程式について説明できる
		10週	キャリアの運動 (4)	キャリアの振る舞いについて説明できる
		11週	p n 接合(1)	エネルギーバンド図を用いて p n 接合を説明できる
	2540	12週	p n 接合(2)	p n接合の電圧-電流特性を説明できる
	2ndQ	13週	p n 接合(3)	p n接合の接合容量を説明できる
		14週	p n 接合(4)	ダイオードの降伏減少を説明できる
		15週	前期復習	
		16週		
		1週	電子デバイス演習(1)	半導体に関する基本的な計算ができる
		2週	ショットキーダイオード	エネルギーバンド図を用いてショットキーダイオード を説明できる
经用	2rd0	3週	発光ダイオードとレーザーダイオード	種々のダイオードを説明できる
後期	3rdQ	4週	バイポーラトランジスタ(1)	エネルギーバンド図を用いてバイポーラトランジスタ を説明できる
		5週	バイポーラトランジスタ(2)	増幅率を説明できる
		6週	バイポーラトランジスタ(3)	静特性を説明できる

		__		10 -1 -5 50	<i>(</i> .)				+ 1 44 1 1	## L N	
		7週		ポーラトランジ	バイポーラトランジスタの基本的な計算ができる						
		8週	MOSデバイス(1)				エネルギーバンド図を用いてMOS構造を説明できる				
		9週	MOSデバイス(2)				印加電圧に対するMOS構造の変化を説明できる				
		10週	MOSデバイス(3)				MOS構造の静電容	量を説明で	できる		
		11週	MOS	デバイス(4)			MOSFETの動作を説明できる				
		12週	MOS	デバイス(5)			MOSデバイスの電圧-電流特性を説明できる				
4tr	hQ	13週	そのイ	他のFET			その他のFETについて説明できる				
		14週	集積回路				集積回路の分類を説明できる				
		15週	後期征	復習							
		16週									
モデルコア	モデルコアカリキュラムの学習内容と到達目標										
							ベル 授業週				
評価割合											
試験		発	 表	相互評価	態度	ポートフォリオ	その他		合計		
総合評価割合 8			0		0	0	20	0		100	
基礎的能力 0		0		0	0	0	0		0		
専門的能力 80			0		0	0	20	0		100	
分野横断的能力	カ 0		0		0	0	0	0		0	