 石川	 丁業高領	 等専門学校	開講年度 令和04年度 (2	2022年度)	授業科目	流体エネルギー変換工学			
<u>17 山坐</u> 科目番号		0002		科目区分	専門 / 選	· · · · · · · · · · · · · · · · · · ·			
<u>行口留了</u> 授業形態		講義		単位の種別と単位					
開設学科				対象学年	専1	<u> </u>			
開設期		前期	(工工会议	週時間数	2				
四02列 教科書/教	 ∕τ± /		クーボ機械協会編「クーボ機械」入門	1	日本工業出版/プリントを配布する				
<u> </u>		長谷川 狠			IX/ J JJ I 'CE	ه. و دار⊓			
到達目			此人						
	-	ヽゕ゙+ な ナ >+ + .≡	**************************************						
2. 流体機 3. 流体機 4. 風力,	機械の作動原 機械運転時の 水力発電	システムにつ	が明できる。 説明できる。 点を説明できる。 いて説明できる。 いて説明できる。 いて説明できる。						
ルーブ	リック								
			理想的な到達レベルの目安	標準的な到達レイ	ドルの目安 未到達レベルの目安				
到達目標 項目1			流体エネルギーの変換方法を説明 できる。	流体エネルギーのに説明できる。	の変換方法を簡単	流体エネルギーの変換方法を説明 できない。			
<u>700-1</u> 到達目標 項目2			流体機械の作動原理と構造を説明できる。	流体機械の作動原に説明できる。	原理と構造を簡単	流体機械の作動原理と構造を説明できない。			
到達目標			流体機械運転時の特性と問題点を	流体機械運転時の		流体機械運転時の特性と問題点を			
項目3 到達目標			説明できる。 風力,水力発電システムについて	簡単に説明できる 風力,水力発電	システムについて	説明できない。 風力,水力発電システムについて			
項目4 <u>到</u> 達目標			説明できる。 自然エネルギーの利用例について	簡単に説明できる	の利用例について	説明できない。 自然エネルギーの利用例について			
項目5			説明できる。	簡単に説明できる	3.	説明できない。			
		項目との関							
創造工学	プログラム	A1専門(機械	成工学&電気電子工学&情報工学) 創造	工学プログラム B:	1専門(機械工学)	創造工学プログラム B1専門(電気電子			
_{工字&情} 教育方シ		<u> 巨工子ノロク</u>	ラム F1専門(電気電子工学&情報工学))					
概要		を利用し れにより , 環境諸	ン・圧縮機などを取り上げ、その作動原理と仕組みを理解する。次に、最近注目を浴びている自然エネルギーた風力発電、水力発電などにおけるエネルギー変換技術について理解し、技術動向と問題点について学ぶ。こ、自然環境や社会環境に適合しうる有効な流体エネルギー利用技術とその課題について理解を深めるとともに問題への解決方法を学ぶ。 後学習など】						
授業の進	め方・方法	随時レボ 【関連科 移動現象	ート課題を課する。						
注意点		【評価方 随時与え	复習することが重要です。分からない場合は随時質問してください。 去・評価基準】 る課題(40%), 学期末試験(60%)で評価する。 西基準として60点以上を合格とする。						
テスト		•							
	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	修上の区分	}						
	<u> アイブラー:</u> ティブラー:		, □ ICT 利用	☑ 遠隔授業対応	-	□ 実務経験のある教員による授業			
	7177 -		L 101 43/13		`	□ 大切性例ののの対象にある」文字			
授業計	面								
		週	授業内容			堙			
		1週	12条内台 流体エネルギー利用とターボ機械		流体機械(ター	 ボ機械)による流体と機械の間のエネ			
前期		2週	流体と羽根車間のエネルギー変換		ルギー移動について理解し、説明できる。 流体機械の力学の基礎とある流れ学の関連項目を理解				
		3週	流体と羽根車間のエネルギー変換		し、説明できる。 流体機械の力学の基礎とある流れ学の関連項目を理解				
	1stQ	4週	遠心羽根車構造と内部流れ(1)		し、説明できる。 遠心式ポンプの作動原理と構造を説明できる。				
		5週	遠心羽根単構造と内部流れ(2)		遠心式パンプの作動原理と構造を説明できる。 遠心式ポンプの作動原理と構造を説明できる。				
		6週	遠心羽根単構造と内部流れ(3)		遠心式パンプの作動原理と構造を説明できる。 遠心式ポンプの作動原理と構造を説明できる。				
		7週			遠心式パングの作動原理と構造を説明できる。				
		8週	<u> </u>		軸流式流体機械の作動原理と構造を説明できる。 ターボ機械の運転時の特性と問題点を説明できる。				
	2ndQ	9週	ダー小機械の性能と連転 エネルギー資源の現状		ター				
		10週	エイルヤー貞源の現状 風力発電システム		エイルヤー 真家の現状に づい C説明 Cさる。 風力発電システムについて説明できる。				
		11週							
					水力発電システムについて説明できる。				
		12週	試験 発電システム・自然エネルギー利用技	術	発電システム・自然エネルギー利用技術について調査				
		14週	一		し、その内容を説明できる。 発電システム・自然エネルギー利用技術について調査				
			1701 1701		し、その内容を説明できる。 発電システム・自然エネルギー利用技術について調査				
		15個	登雷システム・白然エクルゼー利田は	iálī					
		15週	発電システム・自然エネルギー利用技	術	発電システム・ し、その内容を				

モデルコアカリキュラムの学習内容と到達目標											
分類 分野		学習内容	学習内容の到達目標			到達レベル	授業週				
評価割合											
		試験		ポートフォリオ	合計						
総合評価割合		60		40	100						
基礎的能力		0		0	0						
専門的能力		60		40	100						
分野横断的能力		0		0	0						