福井	‡工業高等	 穿門学校	開講年度 令和03年度 (2021年度)	授業	科目						
科目基础				•		•						
科目番号		0171		科目区分	車	 門 / 選択	3					
授業形態 講義				単位の種別と単位								
開設学科		機械工学	A 科	対象学年	5		· -					
開設期		前期		週時間数		2						
教科書/教		PEL編集	委員会 材料力学 実教出版 久池井茂 絹									
担当教員		村中 貴幸										
到達目	堙											
材料力学	I , および	Ⅱ で学んだ基 を養成する。	礎知識と解析力をもとに、より複雑で	で進んだ諸問題に対	する解析法	を学び、	各種構造物や機器の強度設計に十					
ルーブリック												
			理想的な到達レベルの目安	標準的な到達レ			未到達レベルの目安					
評価項目	1		│構造物に生じる応力やたわみを様 │々な方法で,求めることができる	構造物に生じる原 つの方法で,求る			構造物に生じる応力やたわみを求 めることができない					
評価項目2			(AMAC) (AMACC) (CES)	<u> </u>	NOCCI)	CC2	89557, C5401					
評価項目:							1					
		古口 レの問	IT				1					
		項目との関	1六									
JABEE JE	育到達度目 B3 JABEE J											
教育方法	法等	-										
概要		です。 実務との	は複合融合型「環境生産システム工学 関連:この科目は企業で編機の設計を の強度設計について講義形式で授業を	2担当していた教員:								
講義 授業の進め方・方法 授業			教科書に沿いて開義が式で放棄を行うるのです。 教科書に沿いながら行います。教科書の例題や演習問題についてその都度解説を加えます。材料力学の理論や りいて理解を深め、解析力を身につけるためには、できるだけ多くの問題を自ら解くことが重要です。このため 学修のための課題はほぼ毎回配布し、提出する必要があります。このような課題には積極的に取り組むことをお ます。									
注意点 担業の原	属性・履備	る課題、 して成績 目成績に	: 材料力学II(本科4年)、生産材料工 : 試験の採点では、最終結果のみなら 演習の評価30%、そして選択科目の付 を評価する。合格点に達しない場合は 最大10点の加点をする。ただし、上陸 : 学年成績 6 0 点以上	立置つけを考慮し、 は、追加課題もしく	目ら学ぶ息	息思の評値	曲として受講態度、出席点を10%と					
	ティブラーニ		□ ICT 利用	□ 遠隔授業対応	<u>.</u>		☑ 実務経験のある教員による授業					
	画											
***************************************		週	授業内容		週ごとの致	到達目標						
		1週	シラバスの説明, ガイダンス, 厚肉F 【授業外学習の内容】演習ブリント		厚肉円筒の力の釣り合い式が説明できる							
前期			組み合わせ円筒、焼きばめ 【授業外学習の内容】演習プリント		焼きばめしろの厚みを計算できる							
		3週	厚肉球の応力と変形 【授業外学習の内容】演習プリント, (P.190)	厚肉球の力の釣り合い式が説明できる								
		4週	材料力学と設計 【授業外学習の内容】演習プリント, (P.192)	設計基準について説明できる								
	1stQ	5週	組み合わせ応力状態の強度計算(最え 【授業外学習の内容】演習プリント, (P.192)	主応力に基づいた強度計算ができる								
		6週	組み合わせ応力状態の強度計算(最元 , トレスカの降伏条件) 【授業外学習の内容】演習プリント, (P.192)	トレスカの降伏条件式を説明できる								
		7週	祖み合わせ応力状態の強度計算(せんギー説, ミーゼスの降伏条件) 【授業外学習の内容】演習プリント,	ミーゼスの降伏条件式を説明できる								
		O.E.	(P.192)									
		1	中間確認									
		9週	試験の返却と解説 【授業外学習の内容】完全解答の作品	龙	中間確認知	完全解答の	の作成					
		10週	組み合わせ応力状態の強度計算演習 授業外学習の内容】演習プリント, (P.165)		降伏条件式の選択と適用ができる							
	2ndQ	11週	オイラーの座屈公式, 演習 【授業外学習の内容】演習プリント, (P.168)	オイラーの座屈荷重を計算できる								
		12週	オイラーの座屈公式, 演習 【授業外学習の内容】演習プリント, (P.169)	第13章の予習	種々の端末条件に対して,オイラーの座屈荷重を計算 できる							
		1	\/									

		13週	座屈実験式,演習 【授業外学習の内容】演習プリント				ランキン, テトマイヤー, ジョンソンの実験式を説明 できる					
		14週					実験式に基づいた座屈荷重を計算できる					
	15週 学			学習のまとめ,過去問を用いた試験対策演習 【授業外学習の内容】期末試験対策学習			期未試験対策勉強					
		16週										
モデルコアカリキュラムの学習内容と到達目標												
分類 分野				学習内容 :	内容 学習内容の到達目標 到達レベル 授業							
評価割合												
	i	試験	課	題・レポート	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合		60		0	0	10	0	0	100			
基礎的能力		0 0			0	0	0	0	0			
専門的能力		60		0	0	10	0	0	100			
分野横断的能力		0 0			0	0	0	0	0			