	+ 丁 类 吉 垒	 専門学校	開講年度	 平成30年度 (2	0010年度)	授業科目	 生産材料工学			
		守门于仪		十成30千皮(2	2010年度)	12条14日 1	工/生物/社工于			
科目番号		0019		科目区分		専門 / 選択				
授業形態		講義				数 学修単位:				
開設学科			テム工学専攻	·人工学専攻		専1	<u>-</u>			
開設期		前期		週時間数	2					
教科書/教	教材	黒木・大	森・友田著、「金属の	の強度と破壊」、	森北出版社					
担当教員		安丸 尚樹								
到達目	標									
明できる (2) 破壊 (3) フラ (4) ガル に関する	こと。 靱性を用いた クトグラフィ バノ電池作月 環境規制に5	こ設計や平面で	イン能力を育成するが いずみ破壊靱性試験の 説できること。また、 防食法、応力腐食割れ と。	の解析方法を習得	すること。					
ルーブ	リック		理想的な到達レベルの目安標準的な到達レ			ベルの目安 未到達レベルの目安				
			生産材料工学にお				,			
評価項目	1		充分に習得し、様 するために応用で	(々な問題を解決	生産材料工学にお 充分に習得・理解 解くことができる	し、演習問題を	生産材料工学における基礎知識が 習得できていない。 			
評価項目										
評価項目		·	<u> </u>							
		頁目との関	<u>係</u>							
JABEE JE										
教育方法等 工業材料に対し、産業界で問題になり生産技術の分野で重要な、破壊論・表面工学・環境材料学の基礎力を 。破壊力学の基本的考え方や解析法など入門的内容を学び、破壊事故の解析に用いられるフラクトグラフィー 多い疲労破壊について解説する。さらに、環境材料学として、腐食の電気化学と応力腐食割れ、材料の環境が										
授業の進	め方・方法	宜紹介し、	表面工学・環境材料 技術者として自立 うに材料学の基礎知	する上での材料工	学の重要性を認識さ	せる。なお、電気	関する諸問題(破場 『系・電子情報系出	襲事故例等)を適 出身者にも理解し		
授業計	画		: 到達目標と科目合格 	日は00点女工で日		間ごとの到達目標				
				受業概要、生産材料工学について			シラバス、生産材料工学の目的、破壊の分類が説明で			
		2週	表面エネルギー				きる。 破壊力学の基本的考え方、表面エネルギーが説明できる。			
	1stQ	3週				©・ 原子間結合力からの表面エネルギーの導出ができる。				
			性破壞応力			固体の理論的引張強さ、グリフィスの条件が説明でき る。				
前期		5週	 脆性破壊応力	:性破壊応力			グリフィスの脆性破壊応力の導出、き裂先端の応力場 が説明できる。			
		6週	z壊靱性			破壊靱性の導出、き裂の基本型が説明できる。				
		7週	破壊靱性	壊靱性			破壊靱性を用いた設計演習、き裂先端の塑性域を説明できる。			
		8週	破壊靱性				破壊靱性に対する板厚の影響、平面ひずみ破壊靱性試験を説明し、演習ができる。			
		9週	フラクトグラフィ				破壊靱性に影響する諸要因、フラクトグラフィ、粒内 破壊が説明できる。			
		10週	 フラクトグラフィ	 !ラクトグラフィ			粒界破壊、疲労破壊が説明できる。			
			党的破壞			定応力疲労、定ひずみ疲労、疲労き裂の発生と成長が 説明できる。				
	2ndQ	12週				疲労さる。 疲労き裂成長の破壊力学的取扱い、Parisの式による疲 労寿命予測ができる。				
		13週	貴境材料学			腐食の電気化学基礎(ガルバノ電池作用、腐食図)が 説明できる。				
		14週	環境材料学			応力腐食割れ、防食法、表面改質が説明できる。				
			環境材料学、まとめ			材料の環境規制を説明できる。まとめを行う。				
		16週								
	コアカリニ		学習内容と到達							
分類 ()	^	分野	学習内容	学習内容の到達目	票		到達レ	ベル 授業週		
評価割る				T	Tou-1	.0	I n:	Ta-1		
<i>₩</i> ∧======	試		課題レポート	相互評価		ポートフォリオ •	その他	合計		
総合評価	割合 90		10	0	0	0	0	100		

基礎的能力	90	10	0	0	0	0	100
専門的能力	0	0	0	0	0	0	0
分野横断的能力	0	0	0	0	0	0	0