 長野	 予丁業高等	 等専門学校	5 盟	講年度 令和0		0020年度	:)	授業科	日雷和	茲気学Ⅱ		
科目基础		ען ננובדדו	יונולו	טווינון איד נה .	/Z-T/X (Z	-020+/ <u>X</u>	.)	JXXII				
科目番号 0043						科目区分		専門	専門 / 必修			
授業形態						単位の種別	別と単位		学修単位: 2			
開設学科	開設学科 電気電子			工学科		対象学年		4				
開設期前期						週時間数		2				
				山口昌一郎「基礎電磁気学(改訂版).								
担当教員		百瀬 成	空									
到達目標	_		A = =++== A				10.0	=+************************************			****	
達成とする	る	挿人した場合	台の諸規冢,	ならひに静磁界	中に磁性体	を挿入した	場合の	諸現冢を説明	できるこ	.とで, 字習	・教育目標(D-1)(
ルーブ!	リック		IM#86/1	+>到をし ~ 11 の 日	14	描:# t/u + \ Z	11.辛1 /	ベルの日 立	1+	·파라		
				理想的な到達レベルの目安		標準的な到達レベルの静電界中に誘電体を挿						
評価項目1			の諸現用レベ	静電界中に誘電体を挿入した場合 の諸現象を定量的に説明でき,応 用レベルの問題を解ける.			問題が中に誘電体を挿入したの諸現象を定性的に説明でき 本的な問題を解ける.			諸現象を充分的な問題を	分に説明できず,基 解けない.	
評価項目2			の諸現	静磁界中に磁性体を挿入した場合 の諸現象を定量的に説明でき,応 用レベルの問題を解ける.			静磁界中に磁性体を挿入した場合 の諸現象を定性的に説明でき,基 本的な問題を解ける.			磁界中に磁性 諸現象を充分 的な問題を	生体を挿入した場合 分に説明できず,基 解けない.	
学科の発	到達目標耳	項目との関	 関係									
教育方法	 法等											
概要	— · · ·	誘電体を要な電子	および磁性体 滋気学の知識	本の諸特性を数式 ^液 数を修得する.	を用いて理	論的に学ぶ.	. また,	, 第二種およ	び第三種	電気主任技術	が者の資格取得に必	
授業の進む	め方・方法	授業方法の科目	には講義を中心とし,適宜演習問題や課題を課す. 日は学修単位科目であり,授業時間30時間に加えて,自学自習時間60時間が必要である.事前・事後学習として 日・復習を行うとともに,与えられた課題等に取り組む.									
^{注意点} 	画	のうえが く先修科 く備考ン た内容を	公安に応して 料目・後修科 > (1)諸法則 をよく復習し	米至9 ることを 料目> 先修科目は を用いて,電磁気 しておくこと,(3)	がけない。 電磁気学 I , i現象を数式)理論式を図	,後修科目(で説明でき 間に表して,	は電磁流 る力を 電磁気	波工学, 電子 身につけるで 現象を視覚的	工学, なこと, (2) りに説明で	らびに電気電 微分積分, 終 できる力を身	電子材料となる. 泉形代数で取り扱っ につけること.	
		週	授業内容					週ごとの到達	目標			
前期	1stQ	1週	静電エネルギーとエネルギー密度					コンデンサに蓄えられるエネルギーと, エネルギーを 度を理解し, 説明できる.				
		2週	平行平板コンデンサの電極間に働く力					平行平板コンデンサの電極間に働く力を計算できる.				
		3週	誘電体の分極現象					誘電体の比誘電率と分極現象について説明できる.				
		4週	誘電体中の電束密度と電界の強さ				ガウスの法則を用いて複数の誘電体がある場容量を計算できる.				体かめる場合の静電	
		5週	誘電体中の電荷間に働く力					誘電体中の電荷間に働く力を計算できる.				
		6週	誘電体の境界条件					境界面における電界と電束密度との関係について説明				
		7週	誘電体中のエネルギー/誘電体挿入平行・ サ			行平板コン	デン	できる。 静電エネルギーの計算と,仮想変位の原理を用い 行平板コンデンサの電極間に働く力を計算できる				
		8週	これまでのまとめ					ここまで学んできた誘電体に係る諸現象を整理し, 明できる.				
		9週	磁性体の性質					磁性材料の特徴,磁化の強さ,磁化率,透磁率について説明できる.				
		10週	磁化曲線/磁化エネルギー/ヒステリシス損失					磁化曲線(ヒステリシスループ)、磁化エネルギーならびにヒステリシス損失について説明できる.				
	1	11週	磁気回路解析(1)					磁気回路解析法を用いて,磁性体内の磁束などを計算する手法を理解できる. 磁気材料の飽和特性や空隙も含めて磁気回路解析を行				
							1	THE	3104+J4L V	の声吹ょへ・・		
	2ndQ	12週	磁気回路角	解析(2)				磁気材料の飲 う手法を理解	型和特性や なし, 磁す	空隙も含め などを計算		
	2ndQ			解析(2) ハてのガウスの法	則			磁気材料の飲 う手法を理解 磁束について	望し, 磁芽	などを計算	て磁気回路解析を行 できる.	
	2ndQ	12週		ハてのガウスの法	則			う手法を理解 磁束について	了し,磁射 このガウス ける磁束密	さなどを計算 への法則を説	て磁気回路解析を行 できる.	
	2ndQ	12週	磁束につい磁性体の基準状磁性体	いてのガウスの法 竟界条件 本の磁荷と永久磁				う手法を理解 磁束について 境界面におけ て説明できる	了し,磁射 でガウス ける磁束密 5.	でなどを計算 への法則を説 密度と磁界の	て磁気回路解析を行 できる. 明できる.	
		12週 13週 14週	磁束につい磁性体の地	いてのガウスの法 竟界条件 本の磁荷と永久磁				う手法を理解 磁束について 境界面におけて説明できる 棒状磁性体の	了し,磁射 でガウス ける磁束密 5.	でなどを計算 への法則を説 密度と磁界の	て磁気回路解析を行できる. 明できる. 強さとの関係につい	
评価割合		12週 13週 14週 15週 16週	磁束につい 磁性体の特 棒状磁性体 達成度試験	いてのガウスの法 竟界条件 本の磁荷と永久磁 検	石			う手法を理解磁束について 境界面におけて説明できる。 棒状磁性体の	ない。 でのガウス ける磁束で いる の磁化現象	でなどを計算 スの法則を説 密度と磁界の なと、永久磁	て磁気回路解析を行できる。 明できる。 強さとの関係につい 石の性質について説	
評価割る総合評価割る		12週 13週 14週 15週	磁束につい 磁性体の特 棒状磁性体 達成度試験	いてのガウスの法 竟界条件 本の磁荷と永久磁 検				う手法を理解磁束について 境界面におけて説明できる。 棒状磁性体の	了し,磁射 でガウス ける磁束密 5.	でなどを計算 スの法則を説 密度と磁界の なと、永久磁	て磁気回路解析を行できる. 明できる. 強さとの関係につい	