上 野			 開講年度	令和04年度 (2	2022年度)	拇	 業科目	科学演習・実験		
科目基礎		で い 」 丁	170冊十/又	」 又(十 ⊤∪цгсг		באנ ן	*171	11 丁/央日 大阪		
科目番号	ET月羊区	0024			NDDA			h⁄4		
授業形態				1						
開設学科			実験・実習一般科			単位の種別と単位数 履 対象学年 2		髲修単位: 1		
開設期		前期		週時間数		2				
			「其礎科学(物理・	1						
教科書/教	材	原子」大	日本図書、「フォト	トサイエンス物理図	録」、「フォトサ	ラペ音: 「初多から子が基礎物理子 カチェ, 電磁気 サイエンス化学図録」数研出版				
担当教員		板屋 智之	2,奥村 紀浩,滝沢 善	洋						
到達目標	<u> </u>									
演習につい 慮してグラス 学習・教	教育目標で	に学習した知 ながらデータ ある(C-1)の	識を使い,問題を鵤の整理ができること の整理ができること D達成とする.	¥くことができるこ ∠.授業で学習した	と. 実験は使用す 概念を使って実験:	る器具を 結果の訪	と正確で安 説明ができ	安全に取り扱えること、有効数字を考 きること、これらを満足することで 		
70 25			理想的な到達レ	 ベルの日安	標準的な到達レイ	· II · O FI		未到達レベルの目安		
				実験器具の正しい使用により、実		実験器具の正しい使用によ		,		
本講義におおいて	うける化学	演習・実験に	験データを導くことができ、それ を元に報告書を作成することができる。		験データを導くことができ、それ を元に報告書を作成することがあ る程度はできる.			・ 験データを導くことができ、それ ・ を元に報告書を作成することができない.		
本講義にお	うける物理	演習において	物理 I II で学習した内容をもと に演習問題を解くことができる.		物理 I / I で学習した内容をもと に演習問題を解くことがある程度 はできる.			に演習問題を解くことができない .		
本講義にま て	らける物理: 	学実験におい	験データを導く	実験器具の正しい使用により、実験データを導くことができ、それを元に報告書を作成することができる.		実験器具の正しい使用により、実験データを導くことができ、それを元に報告書を作成することがある程度はできる.		. 験データを導くことができ,それ		
学科の至]達目標I	項目との関								
教育方法										
概要	4 <i>7</i> 7	本授業で	は物理や化学の授業	美を通して得た数々	の知識を, さまざ	まな演習	問題を解	ない。 なった、実験実習を行なうことで定		
授業の進め	 か方・方法	演習の日		クラス毎の予定は	最初の授業日に配	ーーー 布する.	magne			
	<u>属性・履作</u> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<備考> / 	目・後修科目>先修化学Ⅱ,物理Ⅱの授 旧学Ⅱ,物理Ⅱの授	受業と連携を取って	」 遠隔授業対応	ō.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	□ 実務経験のある教員による授業		
授業計画										
以未可造	1	週				調ごとの	カ到達日料	西		
	1stQ		化学演習 1				週ごとの到達目標 化学実験の基礎知識と事故への対処の方法を理解する ことができる。また、今後の化学実験において、測定 器具の精度を理解し、測定値の取り扱いとレポートを 作成できる。			
		2週	物理演習1「有効数		測定値の取り扱いがわかる.					
前期		3週	物理演習 2				物理学 I の復習を行う.			
		4週	物理演習 3				物理学 I の復習を行う.			
		5週	物理演習 4	理演習 4			物理学Ⅱの内容について演習を行う.			
		6週	物理演習 5				物理学Ⅱの内容について演習を行う.			
		7週	物理演習 6	理演習 6			物理学Ⅱの内容について演習を行う.			
		8週	話話			硝酸カリウムの再結晶の実験を行うことができる. その際, ガラス器具の正しい取り扱いと吸引ろ過のやり方がわかる.				
	2ndQ	9週	・塩基滴定			中和摘定により食酢の濃度決定を行うことができる . この実験では食酢水溶液を調製し,目的に応じて実 験器具を正しく使うことができる.				
		10週	こッケルメッキ			電気分解を利用したニッケルメッキを行うことができる.この実験の電極における反応(金属の析出,気体の発生)を確認し,ファラデーの法則がわかる.				
		11週	コルシウムの化合物			カルシウム化合物の性質に関する実験を行うことができる. 反応による気体(二酸化炭素)発生を確認し、その捕集方法がわかる. さらに、他の気体発生方法についても調べることができる.				
		12週	金属塩の推定	福塩の推定			金属イオンの沈殿反応(代表的な無機化学反応)を行い、溶液の中に含まれる金属塩を推定することができる。			
		13週	度の測定			金属材料の密度を測定し、その材質を判定することができる。その際、測定器の使用法や有効数字の取り扱いがわかる。				
		14週	速度・加速度の測定 ・加速度の測定			コンピュータとセンサー技術を活用した実験を行い				
		1				, 速度や加速度の概念を実感することができる.				

15週			単振り子の周期			単振り子の周期を測定し、それがどのような量に依存しているのかがわかる. このときグラフの描き、活用することができる.					
		16週									
評価割合											
		化学レポ	:− ト	物理レポート(演習も含む)	平常点		その他	合計			
総合評価割合		40		60	0		0	100			
配点		40		60	0		0	100			