岐阜	工業高等	 事門学校	開講年度	令和05年度 (2		授	 業科目	流体力学Ⅱ			
科目基礎											
科目番号	CIIJIK	0098			科目区分		 択				
授業形態		講義			単位の種別と単	位数	: 2				
開設学科		機械工学	科	対象学年		5					
開設期		前期	•	週時間数		2					
教科書/教	材	教科書: 3 参考: JS	JSMEテキストシリー MEテキストシリー	ーズ 流体力学(日 ズ 演習 流体力等	本機械学会,2005 学(日本機械学会,						
担当教員		今井 伸哉	Š		,						
到達目標	<u> </u>	•									
② 境界層③ 理想流	雪理論の基 点体の流れ	標とする。 方程式(ナビ 礎が説明でき の基礎が説明 ポリシー:(できる。	t) の基礎が説明で	きる。						
ルーブリ	<u> </u>		TM+R+6+> 7(1)+1	-N.U. (/吞)	1#3/#45.45.75(\data)	-	7.	+70.51 -20.11 (7-7)			
			理想的な到達レイ	標準的な到達レベル(良) ナビエ・ストークスの式の流体力			未到達レベル(不可)				
① 流体力エ・スト-	ウ学の運動!	方程式(ナビ)の基礎	ナビエ・ストークスの式の流体力 学的意味について、概略を8割以 上正確に説明できる。 ナビエ・ストー 学的意味について 上正確に説明できる。		て、概略を6割以		ナビエ・ストークスの式の流体力学的意味について、概略を6割未満しか正確に説明できない。				
 ② 境界層	雪理論の基		境界層理論の基礎 以上正確に説明	境界層理論の基礎について、8割 以上正確に説明できる。		礎について、6割 できる。		未満しか正確に説明できない。			
③ 理想流	流体の流れ	の基礎	基本的なポテンプ て、8割以上正確	基本的なポテンシャル流れについ て、8割以上正確に説明できる。 基本的なポテ			流れについ 月できる。	基本的なポテンシャル流れについて、6割未満しか正確に説明できない。			
学科の至	J達目標I	項目との関	係								
教育方法	法等										
概要					の基礎を勉強する	5。よっ	 て、本授業	ぎで扱う内容も、機械系技術者にとっ			
104.女			須の内容で構成され								
授業の進め	か方・方法	(事前準	命や定理に関連する証明、及び練習問題は教室外学習で取り組む。 前の学習)流体力学Iを復習しておくこと。 十画:Technical terms が提示するモデルコアカリキュラム(MCC)には含まれていない内容(ナビエ・ストークスの式、理想流体の								
注意点		流れ)もはしかし、は遅刻したは投業の内容	高子版情が近かするとアルコアガライエラム (MCC) には含まれていない写音 (アピエ・ストーラスの式、生活が体の 流れ) も取り扱う。 しかし、これらの内容は本来であれば機械工学系の学生が身に付けておくと良い内容となっている。 遅刻した場合は授業を中断しても良いので遅れた旨を教員に知らせること。 授業の内容を確実に身につけるために、予習・復習は必須である。 なお、成績評価には授業外学習の内容は含まれる。								
授業の属	属性・履何	多上の区分 しょうしょう かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい									
	・イブラーニ		□ ICT 利用		□ 遠隔授業対応	ប់		□ 実務経験のある教員による授業			
授業計画	 jj										
3X2KB1E	İ	週				调ごと	の到達目標	### ### ### ### ### ### ### ### ### ##			
前期	1stQ		ガイダンス,流体力 (ALのレベルC)]学の復習		流体力(教室	内容の定着を図る。 厚前)流体力学Iの復習(2時間) 厚後)流体力学IIの要点をめとめる				
		2週	ナビエ・ストークス (ALのレベルC)	ビエ・ストークスの式の基礎 ALのレベルC)			ナビエ・ストークスの式の基本を理解する。 (教室外学習・事前)教科書の該当箇所を予習す (2時間) (教室外学習・事後)教科書の該当箇所に取り組 (2時間)				
		3週	ナビエ・ストークス (ALのレベルC)	·ビエ・ストークスの式の近似 ALのレベルC)			ナビエ・ストークスの式の近似を理解する。 (教室外学習・事前)教科書の該当箇所を予習す (2時間) (教室外学習・事後)教科書の該当箇所に取り組 (2時間)				
		4週	ナビエ・ストークス (ALのレベルC)	ビエ・ストークスの式に関する演習 ALのレベJVC)			演習を通じてナビエ・ストークスの式の理解を深める。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)				
		5週	境界層理論の基礎 (ALのレベルC)				境界層理論の基礎を理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)				
		6週	重動量方程式 (ALのレベルC)			運動量方程式の基礎を理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)					

		7週		界層の剥離 (ALのレベル(C)			境界層の剥離を理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		8週		流、後流、混 (ALのレベル(晉 流		噴流、後流、混合層流を理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		9週		運動量方程式に関する演習 (ALのレベルC)				演習を通じて運動量方程式の理解を深める。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		10週		型想流体の基礎 (ALのレベルC				理想流体の基礎を理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		11退		度ポテンシャ (ALのレベル(と流れ関数		速度ポテンシャルと流れ関数を理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
	2ndQ	12週		素速度ポテン (ALのレベル(ヤル		複素速度ポテンシャルを理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		13週] 込	ペテンシャル流 み、渦) (ALのレベル(の基礎①(一様流、『	欠き出しと吸い	基本的なポテンシャル流れを理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		14退	<u> </u> り	ポテンシャル流 の流れ) (ALのレベル(の基礎②(二重吹きと	出し、円柱まわ	合成されたポテンシャル流れを理解する。 (教室外学習・事前)教科書の該当箇所を予習する (2時間) (教室外学習・事後)教科書の該当箇所に取り組む (2時間)			
		15退	期	期末試験							
				流体力学IIのまとめ				流体力学IIで学習した内容について説明でき、物理量が計算できる。 (授業外学習・事前)教科書の該当箇所を復習しておく(約2時間) (授業外学習・事後)期末試験の内容を復習する(約2時間)			
モデルコ	アカリキ	= 7 =	ラムの学	習内容と到	到達	 					
<u> </u>	1		<u>クロッコ</u> 分野	学習内容		<u>- 口 (水</u> 学習内容の到達目標			到達レベル	授業调	
				7 71 71		オイラーの運動方程式を説明できる。		0	4	-22/2/2	
					熱流体	層流と乱流の違いを説明できる。		4			
専門的能力	分野別σ 門工学	専	機械系分	野 熱流体		レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。		4			
						境界層、はく離、後流など、流れの中に置かれた物体の周りで生 じる現象を説明できる。		4			
評価割合											
			単元テスト			課題	合計				
巛△≕/≖ 東レ			100			10	100				

総合評価割合 得点