岐阜工業高等専門学校		開講年度	平成29年度(2017年度)	授	業科目	材料力学Ⅱ
科目基礎情報							
科目番号	0182			科目区分		専門 / 必修	
授業形態	講義		単位の種別と単位	数	学修単位: 1		
開設学科	機械工学科		対象学年		4		
開設期	後期		週時間数		1		
教科書/教材	材料力学第3版	页(黒木剛司郎	著,森北出版)				
担当教員	小栗 久和			·			
到達目標							

- 以下の各項目を到達目標とする。
 ①不静定はりの解法が理解でき,実際の不静定はりを解くことができる。
 ②組合せはりの解法が理解でき,実際の問題を解くことができる。
 ③応力の変換およびモールの応力円が理解でき,主応力,主せん断応力,主応力方向を求めることができる。
 ④ひずみの変換が理解でき,ひずみゲージによるひずみ計測に応用することができる。
 ⑤組合せ応力状態における応力とひずみの関係が理解でき,応用問題を解くことができる。

ルーブリック

理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
不静定はりの解法が理解でき,基本的な不静定はりを正確に(8割以上)解くことができる.	不静定はりの解法が理解でき,基本的な不静定はりをほぼ正確に (6割以上)解くことができる.	不静定はりの解法が理解できず ,基本的な不静定はりを解くこと ができない.
組合せはりの解法が8割以上理解でき、基本的な問題を正確に(8割以上)解くことができる.	組合せはりの解法が6割以上理解でき、基本的な問題をほぼ正確に (6割以上)解くことができる.	組合せはりの解法が理解できず ,基本的な問題を解くことができ ない.
応力の変換およびモールの応力円が8割以上理解でき、主応力、主せん断応力、主応力方向を正確に(8割以上)求めることができる.	応力の変換およびモールの応力円が6割以上理解でき、主応力、主せん断応力、主応力方向をほぼ正確に(6割以上)求めることができる.	応力の変換およびモールの応力円が理解できず,主応力,主せん断応力,主応力方向を求めることができない.
ひずみの変換が8割以上理解でき 、ひずみゲージによるひずみ計測 問題を正確に(8割以上)解くこと ができる.	ひずみの変換が6割以上理解でき 、ひずみゲージによるひずみ計測 問題をほぼ正確に(6割以上)解く ことができる.	ひずみの変換が理解できず, ひずみゲージによるひずみ計測に問題を解くことができない.
ずみの関係が8割以上理解でき、応	組合せ応力状態における応力とひずみの関係が6割以上理解でき,応用問題をほぼ正確に(6割以上)解くことができる.	組合せ応力状態における応力とひずみの関係が理解できず, 応用問題を解くことができない.

学科の到達目標項目との関係

教育方法等

概要		はりの変形およびはりのやや複雑な問題と組合せ応力を学習する. この学習により強度設計における, より実用的な問 題の解決法の習得を目指す.
	I=311/2 - 3//	・授業は教科書を参考に「板書・プリント等を利用して行う

授業の進め方・方法

- ・授業中, 学習内容の理解度を確認する例題を出題するので, 自ら解答し, 復習すること. ・3年生の材料力学 I の中で特に応力・ひずみ関係およびはりについて十分復習しておくこと.・遅刻した場合,必ず教員にその旨申し出ること.

注意点

授業計画

1X X DIF	<u> </u>				
		週	授業内容	週ごとの到達目標	
		1週	静定はりのたわみの復習 (ALレベルのC)	3年生で学習した静定はりのたわみを求めることが出 来る。	
		2週	不静定はり1一端固定他端単純支持はり(ALレベルのC)	一端固定他端単純支持はりの支点反力とせん断力・曲 げモーメントを求めることが出来る。	
		3週	不静定はり2 両端固定はり(ALレベルのC)	両端固定はりの支点反力・モーメントとせん断力・曲 げモーメントを求めることが出来る。	
	3rdQ	4週	不静定はり3 さまざまな不静定はり(ALレベルのC)	様々な不静定はりの支点反力とせん断力・曲げモーメ ントを求めることが出来る。	
		5週	組合せはり1 組合せはりの応力と変形(ALレベルのC)	組合せはりの応力の求め方が理解出来る。	
		6週	組合せはり 2 さまざまな組合せはり (ALレベルのC)	具体的な組合せはりの問題を解くことが出来る。	
		7週	組合せはり3 鉄筋コンクリートはり(ALレベルのC)	鉄筋コンクリートはりの応力を計算することが出来る 。	
後期		8週	中間試験		
		9週	組合せ応力 1 応力の変換・モールの応力円(ALレベルのC)	組合せ応力の意味が理解でき、任意の方向の応力への 変換式とモールの応力円が理解出来、主応力・主せん 断応力・主応力方向が計算出来る。	
		10週	組合せ応力 2 ひずみの変換 (ALレベルのC)	任意の方向へのひずみの変換式が理解出来る。	
		11週	組合せ応力 3 ひずみゲージによるひずみ計測 (ALレベルのC)	ひずみゲージによる主応力等の計算方法が理解出来る 。	
	4thQ	12週	組合せ応力4 組合せ応力における応力とひずみの関係 (ALレベルのC)	組合せ応力状態における応力ひずみ関係が理解出来る。	
		13週	組合せ応力 5 弾性係数間の関係 (ALレベルのC)	縦弾性係数、ポアソン比および横弾性係数の関係を求めることが出来る。	
		14週	組合せ応力 6 曲げとねじりを受ける軸,内圧を受ける薄肉円筒 (ALレベルのC)	曲げとねじりを受ける丸棒および内圧を受ける薄肉円 筒の応力を計算することが出来る。	
		15週	期末試験		

	163	週期末記	式験の解答	と解説			
モデルコ	アカリキュ	ラムの学習	内容と到	達目標			
分類		分野	学習内容	学習内容の到達目標	到達レベル 授業週		
専門的能力 分野別の専 門工学	ム殿叫の東			多軸応力の意味を説明できる。	4		
	が野別の専 門工学	機械系分野	力学	二軸応力について、任意の斜面上に作用する応力、 ん断応力をモールの応力円を用いて計算できる。	主応力と主せ 4		
評価割合							
				試験合計	合計		
総合評価割合				100	100		
得点			100	100			