岐阜工業高等専門学校		開講年度	平成31年度 (2019年度)		授業科目	1 エネルギー工学			
科目基礎情報									
科目番号	0235			科目区分	専門 /	専門 / 必修			
授業形態	講義			単位の種別と単位数	対 学修事	学修単位: 1			
開設学科	機械工学科			対象学年	5	5			
開設期	後期			週時間数	1	1			
教科書/教材	熱機関工学(越智敏明他, コロナ社, 2006, 10)を教科書として用いる。また適宜プリントを配布する。								
担当教員	山本 高久								
到達目標									
以下の各項目を到達目標とする。 ① 熱エネルギーを仕事に変換する装置の動作原理とその特徴を理解し、利用する能力。 ② 熱エネルギー変換装置の熱力学第一法則に基づく性能評価を行う能力。 ③ 熱エネルギー変換装置の性能改善に関する基本的な考え方を理解し、利用する能力。 ④ コンバインドサイクルの原理とその特徴を理解し、利用する能力。									

ルーブリック

70 2277								
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安					
評価項目1	熱エネルギーを仕事に変換する装置原理と特徴を理解し、演習問題を80%以上解答することができる。	熱エネルギーを仕事に変換する装置原理と特徴を理解し、演習問題を60%程度解答することができる。	熱エネルギーを仕事に変換する装置原理と特徴を理解できておらず 、演習問題を解答することができ ない。					
評価項目2	熱エネルギー変換装置の熱力学第 一法則に基づく性能評価に関する 問題を80%以上解答することが できる。	熱エネルギー変換装置の熱力学第 一法則に基づく性能評価に関する 問題を60%程度解答することが できる。	熱エネルギー変換装置の熱力学第 一法則に基づく性能評価に関する 問題を解答することができない。					
評価項目3	熱エネルギー変換装置の性能改善 に関する問題を80%以上解答す ることができる。	熱エネルギー変換装置の性能改善 に関する問題を60%程度解答す ることができる。	熱エネルギー変換装置の性能改善 に関する問題を解答することがで きない。					
評価項目4	コンバインドサイクルの原理と特徴を理解し、コンバインドサイクルに関する問題を80%以上解答することができる。	コンバインドサイクルの原理と特徴を理解し、コンバインドサイクルに関する問題を60%程度解答することができる。	コンバインドサイクルの原理と特徴を理解しておらず, コンバインドサイクルに関する問題を解答することができない。					

学科の到達目標項目との関係

教育	ᆂ	:+	44
2V 日	л	77.	╧

3/113/3/24/3	
概要	熱力学I,エネルギー工学,伝熱工学I等で学習した知識に基づいて,熱エネルギーを利用した動力発生装置および熱輸送 装置に関する動作原理と性能などの解析方法を修得する。
授業の進め方・方法	本授業は教科書をおよび板書を中心に行う。 英語導入計画:Technical terms
注意点	必ずノートをとるように。また、理解を促進するために演習等を行うので必ず自分の力で解くこと。本授業で取り扱う内容は応用物理(第3学年), 熱力学I(第4学年), 伝熱工学I(第4学年)と深く関連している。事前に復習しておくこと。 学習・教育目標: (D-3エネルギー系) 100% JABEE基準1(1): (d)

授業計画

		週	授業内容	週ごとの到達目標		
		1週	各種エネルギーとエネルギー変換	各種エネルギーとエネルギー変換について理解出来る 。		
		2週	熱機関の4大装置と熱エネルギー変換装置の分類	熱機関の4大装置と熱エネルギー変換装置の分類について理解出来る。		
		3週	熱機関の各種基本サイクルとその性能	熱機関の各種基本サイクルとその性能について理解出 来る。		
	3rdQ	4週	熱機関の性能に影響する因子とその効果(小テスト))(ALレベルのC)	熱機関の性能に影響する因子とその効果について理解 出来る。		
		5週	速度型内燃機関の基本サイクルとその性能	速度型内燃機関の基本サイクルとその性能について理解出来る。		
		6週	速度型内燃機関の改良サイクル1 再生サイクル	再生サイクルについて理解出来る。		
後期		7週	速度型内燃機関の改良サイクル2 再熱サイクル (ALレベルのC)	再熱サイクルについて理解出来る。		
1友州		8週	中間試験			
		9週	外燃機関の種類と基本特性	外燃機関の種類と基本特性について理解出来る。		
		10週	速度型外燃機関の基本サイクルと性能に影響する因子	速度型外燃機関の基本サイクルと性能に影響する因子 について理解出来る。		
		11週	速度型外燃機関の改良サイクル1 再熱サイクル (ALレベルのC)	速度型外燃機関の改良サイクルにおける再熱サイクル について理解出来る。		
	4thQ	12週	速度型外燃機関の改良サイクル2 再生サイクル (ALレベルのC)	速度型外燃機関の改良サイクルにおける再生サイクル について理解出来る。		
		13週	複合サイクル(小テスト)	複合サイクルについて理解出来る。		
		14週	冷凍サイクル(ALレベルのC)	冷凍サイクルについて理解出来る。		
		15週	期末試験			
		16週	総括			

モデルコアカリキュラムの学習内容と到達目標

分類		分野	学習内容	学習内容の到達目標	到達レベル	授業週
界内的能力 胸下	野別の専 L学	機械系分野	熱流体	サイクルの意味を理解し、熱機関の熱効率を計算できる。	4	

		カルノ	ーサイクルの状	状態変化を理解し、熱効率を計算できる。		4	
		エント るエン	エントロピーの定義を理解し、可逆変化および不可逆変化におけるエントロピーの変化を説明できる。			4	
		サイク	サイクルをT-s線図で表現できる。				
評価割合							
	試	源	課	題・小テスト	合計		
総合評価割合 80		0	20)	100		
得点 80		0	20)	100		