岐阜工業高等専門学校		開講年度	令和05年度 (2	023年度)	授美	業科目	応用数学A
科目基礎情報							
科目番号	0052			科目区分]	専門 / 必	修
授業形態	講義			単位の種別と単位数		履修単位: 1	
開設学科	電気情報工学科			対象学年 3			
開設期	前期			週時間数		2	
教科書/教材		を配布する. ま して用いる.	た, 基礎解析学(改	訂版)(矢野, 石原	・裳華	房),新	訂 確率統計(高遠ほか・大日本図書
担当教員	柴田 欣秀						
到達日煙							

判连口际

多くの工業的分野や他の応用数学に応用され,第4学年の応用数学でも学ぶ複素関数の微分・積分や確率・統計の基礎的事項を理解し,計算できることを目標とする. 特に, 微分積分を含む数学は基礎知識として関連があり, 微分積分などの応用事例としての理解が深まる事も期待できる.

- ①複素数の定義や性質による計算 ②複素平面に関する理解と計算 ③複素変数と複素関数に関する計算 ④確率の定義や性質による計算 ⑤確率分布に関する理解と計算 ⑥特に2項分布に関する理解と計算

ルーブリック

	v─2999						
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安				
評価項目1	複素数の基礎的な定義や性質を利用した計算問題を正確(8割以上)に解くことができる.	複素数の基礎的な定義や性質を利 用した計算問題をほぼ正確(6割以 上)に解くことができる.	複素数の基礎的な定義や性質を利用した計算問題を解くことができない.				
評価項目2	複素平面の概念を理解し, 視覚的な 説明とともに, 関連する計算問題を 正確(8割以上)に解くことができる	複素平面の概念を理解し, 視覚的な 説明とともに, 関連する計算問題を ほぼ正確(6割以上)に解くことがで きる.	複素平面の概念を理解し, 視覚的な 説明とともに, 関連する計算問題を 解くことができない.				
評価項目3	複素変数と複素関数に関する計算 問題を正確(8割以上)に解くことが できる.	複素変数と複素関数に関する計算 問題をほぼ正確(6割以上)に解くこ とができる.	複素変数と複素関数に関する計算 問題を解くことができない.				
評価項目4	確率の基礎的な定義や性質を利用 した計算問題を正確(8割以上)に解 くことができる.	確率の基礎的な定義や性質を利用 した計算問題をほぼ正確(6割以上)に解くことができる.	確率の基礎的な定義や性質を利用 した計算問題を解くことができな い.				
評価項目5	確率変数と確率分布を理解し, 視覚 的な説明とともに, 関連する計算問 題を正確(8割以上)に解くことがで きる.	確率変数と確率分布を理解し, 視覚 的な説明とともに, 関連する計算問 題をほぼ正確(6割以上)に解くこと ができる.	確率変数と確率分布を理解し, 視覚 的な説明とともに, 関連する計算問 題を解くことができるない.				
評価項目6	特に2項分布に関する計算問題が正確(8割以上)に解くことができる.	特に2項分布に関する計算問題がほ ぼ正確(6割以上)に解くことができ る.	特に2項分布に関する計算問題が解 くことができない.				

学科の到達目標項目との関係

教育方法等

概要	
授業の進め方・方法	プリントを使用し, 授業を進める. 要点をメモし, 各自プリントやノートを充実させ, 理解度向上のために(例題等を参考に)演習問題を解くことが重要である. この演習と, 理解度を確認するための課題等も評価対象となる. 授業と演習を通じ, 自分の数学の知識を確認しつつ, 復習や予習の自宅学習が必須である. 英語導入計画: Technical terms
注意点	学習・教育目標: (D-1)100%

授業の属性・履修上の区分

授業計画

		週	授業内容	週ごとの到達目標		
		1週	第1回: 複素数(複素数の定義, 実部, 虚部, 相等, 四 則演算, 共役複素数)	複素数の定義が理解できる, 実部, 虚部, 相等, 四則演算, 共役複素数の計算ができる		
	2週	第2回:複素数(絶対値, 三角不等式, 図形)	絶対値の計算、三角不等式を用いた証明、複素数の図 形表示ができる			
		3週	第3回:複素数と複素平面(極形式)	複素数を極形式に変換することができる		
	1-10	4週	第4回: 複素数と複素平面(ド・モアブルの定理, n乗根)	ド・モアブルの定理を用いてn乗根の計算ができる		
	1stQ	5週	第5回:複素数の数列(複素数列の級数,極限値)	複素数列の級数を取り扱うことができ、極限値の計算ができる		
前期		6週	第6回:複素関数の微分(複素関数の正則性, 導関数)	複素関数の正則性や導関数を理解出来る		
		7週	第7回:複素数・複素関数の復習			
		8週	第8回:確率(確率現象の説明,確率の定義,情報量, 順列,組み合わせの計算法)			
		9週	第9回:確率(事象の性質, 確率の性質・公理, 加法定理)	順列, 組み合わせの計算を行うことができる		
	2ndQ	10週	第10回:確率(条件付き確率, 乗法定理, 事象の独立)	公理や加法定理を用いた計算を行うとこができる		
		11週	第11回:確率(復元抽出と非復元抽出, 反復試行の確率, ベイズの定理)	条件付き確率や乗法定理や事象の独立を使い分けて計算できる		

12週	第12回:確率分布(離散分布,2項分布,平均値の計算法)	復元抽出と非復元抽出,反復試行の確率,ベイズの定理 を用いた確率が計算ができる
13週	第13回:確率分布(分散と標準偏差の計算法),確 率・確率分布の復習	離散分布や2項分布の平均値の計算ができる
14週	第14回:確率の総復習	様々な分布の分散と標準偏差の計算ができる
15週	第15回:複素数・複素関数,確率・確率分布の総まとめ	
16週		

	アカワキュ		習内容と到		7012	14277177.00
類		分野	学習内容	学習内容の到達目標	到達レベル	授業週
				整式の加減乗除の計算や、式の展開ができる。	3	
				因数定理等を利用して、4次までの簡単な整式の因数分解ができ る。	3	
				分数式の加減乗除の計算ができる。	3	
				実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。	3	
				平方根の基本的な計算ができる(分母の有理化も含む)。	3	
				複素数の相等を理解し、その加減乗除の計算ができる。	3	
				解の公式等を利用して、2次方程式を解くことができる。	3	
				因数定理等を利用して、基本的な高次方程式を解くことができる。	3	
				簡単な連立方程式を解くことができる。	3	
				無理方程式・分数方程式を解くことができる。	3	
				1次不等式や2次不等式を解くことができる。	3	
				恒等式と方程式の違いを区別できる。	3	
				2次関数の性質を理解し、グラフをかくことができ、最大値・最小値を求めることができる。	3	
				分数関数や無理関数の性質を理解し、グラフをかくことができる。	3	
				簡単な場合について、関数の逆関数を求め、そのグラフをかくこ とができる。	3	
				累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。	3	
				指数関数の性質を理解し、グラフをかくことができる。	3	
				指数関数を含む簡単な方程式を解くことができる。	3	
				対数の意味を理解し、対数を利用した計算ができる。	3	
				対数関数の性質を理解し、グラフをかくことができる。	3	
				対数関数を含む簡単な方程式を解くことができる。	3	
				角を弧度法で表現することができる。	3	
礎的能力	数学	数学	数学	三角関数の性質を理解し、グラフをかくことができる。	3	
かたロッドピンフ	数于	奴士	数于	加法定理および加法定理から導出される公式等を使うことができる。	3	
				三角関数を含む簡単な方程式を解くことができる。	3	
				三角比を理解し、簡単な場合について、三角比を求めることができる。	3	
				一般角の三角関数の値を求めることができる。	3	
				2点間の距離を求めることができる。	3	
				内分点の座標を求めることができる。	3	
				2つの直線の平行・垂直条件を利用して、直線の方程式を求めることができる。	3	
				簡単な場合について、円の方程式を求めることができる。	3	
				放物線、楕円、双曲線の図形的な性質の違いを区別できる。	3	-
				簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。	3	
				積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。	3	
				簡単な場合について、順列と組合せの計算ができる。	3	-
				等差数列・等比数列の一般項やその和を求めることができる。	3	-
				総和記号を用いた簡単な数列の和を求めることができる。	3	
				不定形を含むいろいろな数列の極限を求めることができる。	3	-
				無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。	3	
				ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。	3	
				平面および空間ベクトルの成分表示ができ、成分表示を利用して 簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。	3	
				平面および空間ベクトルの内積を求めることができる。 問題を解えために、ベクトルの平行、垂直条件を利用することが		
				問題を解くために、ベクトルの平行・垂直条件を利用することができる。	3	
	İ	1		空間内の直線・平面・球の方程式を求めることができる(必要に 応じてベクトル方程式も扱う)。	3	1

行列の定義を理解し、7月のの前、金・スカラーとの輪、7月のの輪 3							
接行列の定義を影響し、2次の正方行列の逆行列を変わることができる。 「行列にの定義とは任義を開発し、最初のは行列であることができる。 「おりないの定義とは任義を開発し、最初の経行列化の指される。」 「おりないの定義とは任義を関係し、保护支援を表す行列を求めることができる。 「おりないのにはいって、関係の必要を表す行列を求めることができる。」 「一個の回路の立まや、明知を変してきないできる」 「一個の回路の立まを開い、保护を表かることができる」 「一個の回路の立まを開い、保护を表かることができる」 「一個の回路の立まを開い、保护を表かることができる」 「一個の回路の立まを開い、保护を表かることができる」 「一個の回路の立まを開い、保护を表かることができる。」 「一個の回路の立まを開い、保护を表かることができる。」 「一個の回路の立まを開い、保护を表かることができる。」 「一個の回路の立まを開い、保护を表かることができる。」 「一個の回路の立まを開い、保护を表かることができる。」 「一個の回路の立まを開い、アクフの関係をからことができる。」 「一個のの事務を開いて、インフの関係を表がしてができる。」 「一個のの事務を開いて、インフの関係を表がしてができる。」 「一個のの事務を開いて、インフの関係を表がしてができる。」 「一個のので変かることができる。」 「一個の事務を表がしている。」 「一個の事務を用いる。」 「一個の事務を表がしている。」 「一個の事務を用いる。」 「一個の事務を表がしている。」 「一個の事務を用いる。」 「一個の事務						3	
「空気の、					逆行列の定義を理解し、2次の正方行列の逆行列を求めることが	3	
正とができる。 Weggeboの工義や理解し、解析変換を表す行列を求めることができる。 ②流を扱い性変質を表す行列を求めることができる。 ③ 1							
直点。					ことができる。	3	
# 例外の側をに対するを解析変換を表す行列を求めることができる。						3	
(2.)						3	
部分係数の意味や、導問数の正義を重弾し、導門数を求めること ができる。					12	3	
ができる。 ・						3	
横・高の専列数の公式を用いて、薄脚数を求めることができる 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3						3	
無理						3	
逆三角関数を理解し、逆三角関数の噂関数を求めることができる。					合成関数の導関数を求めることができる。	3	
関数の階域表を取いて、極値を求め、グラフの概形をかくことが できる。 極値を利用して、関数の設を値、砂小値を求めることができる。 利理が場合について、関数の設を値、砂小値を求めることができる。 2次の場関数を利用して、グラフの凹心を返れることができる。 2次の場関数を利用して、アクラの凹心を変わることができる。 本来めることができる。 一定様分の定義を理解し、離中な子展分を求めることができる。 一を表めることができる。 を表めることができる。 一般地があるよど側が積分を用いて、不上精分や上精分を求める。 とができる。 一般地な場合について、曲線で囲まれた図形の画稿を定様分で求める。 一般地な場合について、曲線で囲まれた図形の画稿を定様分で求める。 一般地な場合について、曲線で囲まれた図形の画稿を定様分で求める。 一般地な場合について、曲線で囲まれた図形の画稿を定様分で求める。 一般地な場合について、曲線で囲まれた図形の画稿を定様分で求める。 一般地な場合について、曲線で囲まれた図形の画稿を定様がでまめる。 一般地な場合について、一般の体積を定様分で求めることができる。 一般地な場合について、一般の体積を定様分で求めることができる。 一般地な場合について、2次までの偏導関数を求めることができる。 一般地なりの定義を理解し、簡単なな変が関析の吸り方様式を解る。 一般地なり効果を理解し、簡単なななのをととができる。 を表してができる。 を対か方様式の定義を理解し、間単なな数が無形の成り方様式の画像を理解し、簡単ななのの場をので表がまできる。 をないることができる。 を対か方様式を解くことができる。 まを整備し、簡単なななかがたとができる。 まを整備し、簡単なななかがまとができる。 まを整備し、簡単なななかができる。 まを表のの記をが関すし、上できる。 まを表のの記をが関するとしたできる。 まを発情が、無限ない、まを対すのできる。 2、大かることができる。 ・ 1次でのことができる。 ・ 2、大かできる。 ・ 2、大かできる。 ・ 2、大かの音となかることができる。 ・ 2、大ができる。 ・ 2、大かの音となかることができる。 ・ 2、大ができる。 ・ 2、大かの音となかることができる。 ・ 2、大ができる。 ・ 2、大かの音となかることができる。 ・ 2、大ができる。 ・ 2、大かの音とができる。 ・ 2、大かの音とがならるとができる。 ・ 2、大かの音とがなることができる。 ・ 2、大かの音とがなりのででする。 ・ 2、大かの音とがなることができる。 ・ 2、大かの音とがなりできる。 ・ 2、大ができる。 ・ 2、大かの音となかることができる。 ・ 2、大がでは、ないの音とないのでできる。 ・ 2、大がのに関めの画面を作成し、相関係後・回帰自縁を表がな間とないのでできる。 ・ 2、大がのに関めの一層のでするとないできる。 ・ 2、大がのはのをと呼ばして、中の一般を表がな間を表がな間を表がな間を表がな目のでできる。 ・ 2、大がの音とがな目がのを表がな関め、同様のといの音とないのでできる。 ・ 2、大がの音とがな目がなりのでできる。 ・ 2、大がの間が、のでできる。 ・ 2、大がの間が、のでできる。 ・ 2、大ができる。 ・ 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					三角関数・指数関数・対数関数の導関数を求めることができる。	3	
できる。					逆三角関数を理解し、逆三角関数の導関数を求めることができる	3	
度さら、 極値を利用して、関数の最大値・最小値を求めることができる。 3					* 関数の増減表を書いて、極値を求め、グラフの概形をかくことが	2	
2次の導関数を利用して、グラブの凹凸を調べることができる。 3 2次の導関数を対して、グラブの凹凸を調べることができる。 3 2次の導関数を対して、その導関数 3 不雇材がの定義を理解し、関中な不定福分や求めることができる。 3 元権がの定義を理解し、関中な不定福分や求めることができる。 3 元権がの定義を理解し、関中な不定福分や求めることができる。 3 元権がの定義と関係がの基本定理を理解し、関中な定権分を求める。 3 元権がを求めることができる。 4 元権がを求めることができる。 6 元権がを求めることができる。 7 元権がを対していて、企業を関係を定めることができる。 8 元権ができる。 6 元権ができる。 6 元権ができる。 7 元権がを収入ができる。 7 元権がを収入ができる。 7 元権がの定義が可能を理解し、簡単など体の体権を求めることができる。 8 元権ができる。 7 元権がの定義ができる。 8 元権がの定義ができる。 8 元権がの定義ができる。 9 元権がの定義がの定義ができる。 9 元権がのできる。 9 元権がのでができる。 9 元権がのできる。 9 元権がのできる。 9 元権がのできる。 9 元権がののの関係関のに関する基本的な組織を起期できる。 4 元権がののの関係関のに関する基本的な組念を理解します。 4 元権がののの関係関のに関する基本的な組念を理解します。 4 元権がのの関係関のに関する基本的な組念を理解します。 4 元権がののの関係を関係関とに関する 9 元権がのの関係関係関係関係関係を認定する 9 元権がのの関係を関係できる。 4 元権がののの関係を関係できる。 9 元権がのの関係関係関係関係関係を関係できる。 4 元権がのの関係を関係できる。 4 元権がのの関係を関係を関係できる。 4 元権がのの関係を関係を関係できる。 4 元権がのの関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関						٥	
開放の解介変数表示を理解し、解介変数を利用して、その導開数 3 不定稿分の定義を理解し、簡単な不定稿分を求めることができる。					0	3	
を求めることができる。 不定様分の定義を理解し、簡単な不定様分を求めることができる。 温機構分および解り横分を用いて、不定様分や定様分を求めることができる。 主婦分の定義と機構分の基本定理を理解し、簡単な定績分を求めることができる。 対象関数・無理関数・指数関数・対数関数の不定様分 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					2次の導関数を利用して、グラフの凹凸を調べることができる。	3	
不定柄分の定義を理解し、簡単な不定桶分を求めることができる。						3	
上ができる。						3	
定補分の定義と被補分の基本定理を理解し、簡単な定補分を求め 3 ことができる。						3	
分数開放・無理関放・三角開放・指数開放・対数開放の不定積分 3					定積分の定義と微積分の基本定理を理解し、簡単な定積分を求め	3	
簡単な場合について、曲線の長さを定積分で求めることができる。 簡単な場合について、血線の長さを定積分で求めることができる。 簡単な場合について、立体の体積を定積分で求めることができる。					分数関数・無理関数・三角関数・指数関数・対数関数の不定積分	3	
簡単な場合について、血縁の長さを定積分で求めることができる 3 間単な場合について、立体の体積を定積分で求めることができる 3 2 2 変数関数の定義域を理解し、不等式やグラフで表すことができる 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					簡単な場合について、曲線で囲まれた図形の面積を定積分で求め	3	
□ 簡単な場合について、立体の体積を定積分で求めることができる。 2変数関数の定義域を理解し、不等式やグラフで表すことができる。 合成関数の偏微分法を利用して、偏導関数を求めることができる。 一面に関数について、2次までの偏導関数を求めることができる。 「簡単な関数について、2次までの偏導関数を求めることができる。 2重積分の定義を理解し、簡単な2重積分を累次積分に直して求るのることができる。 2重積分の定義を理解し、簡単な2重積分を求めることができる。 3 2重積分を用いて、簡単な2を対解形の微分方程式を解くことができる。 3 2重積分を用いて、簡単な変数分離形の微分方程式を解くことができる。 3 2重積分を用いて、簡単な変数分離形の微分方程式を解くことができる。 4 2位分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。 2 2位析の確率、余事象の確率、確率の加法定理、排反事象の確定を理解し、簡単な場合について、確率を求めることができる。 2 条件付き確率、確率の承述定理、独立事象の確定を理解し、簡単な場合について確率を求めることができる。 2 次元のデータを整理して、平均・分散・標準偏差を求めることができる。 1 次元のデータを整理して、平均・分散・標準偏差を求めることができる。 2 次元のデータを整理して、平均・分散・標準偏差を求めることができる。 1 次元のデータを整理して、平均・分散・標準偏差を求めることができる。 1 次元のデータを整理して、平均・分散・標準偏差を求めることができる。 1 変数関数の局所的な1次近似式を求めることができる。 1 変数関数の局所的な1次近似式を求めることができる。 1 変数関数の一分の表でに、基本的な関数の可能な計算が 3 集合に関する基本的な概念を理解し、集合演算を実行できる。 4 集合の間の関係(関数)に関する基本的な概念を説明できる。 4 集合の間の関係(関数)に関する基本的な概念を説明できる。							
。 2変数関数の定義域を理解し、不等式やグラフで表すことができる。 合成関数の偏微分法を利用して、偏導関数を求めることができる。 簡単な関数について、2次までの偏導関数を求めることができる。 偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 2重積分の定義を理解し、簡単な2重積分を累次積分に直して求 3 極座標に変換することによって2重積分を累次積分に直して求 3 極座標に変換することによって2重積分を求めることができる。 3 2重積分を用いて、簡単な立体の体積を求めることができる。 3 2重積分を用いて、簡単な変数分離形の微分方程式を解 3 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					。 簡単な場合について、立体の体積を定積分で求めることができる		
る。					0		
簡単な関数について、2次までの偏導関数を求めることができる。 6					ే .	3	
編導関数を用いて、基本的な2変数関数の極値を求めることができる。 2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。極座標に変換することによって2重積分を求めることができる。3 2重積分を用いて、簡単な変数分離形の微分方程式を解くことができる。6 3 2重積分を用いて、簡単な変数分離形の微分方程式を解くことができる。6 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					0	3	
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 2重積分の定義を理解し、簡単な2重積分を求めることができる。 3 2重積分を用いて、簡単な立体の体積を求めることができる。 3 2重積分を用いて、簡単な立体の体積を求めることができる。 3 2 2 2 2 2 2 2 2 2					簡単な関数について、2次までの偏導関数を求めることができる。	3	
あることができる。						3	
極座標に変換することによって2重積分を求めることができる。 3 2重積分を用いて、簡単な立体の体積を求めることができる。 3 微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 くことができる。 6 簡単な1階線形微分方程式を解くことができる。 3 定数係数2階斉次線形微分方程式を解くことができる。 3 2 定数係数2階斉次線形微分方程式を解くことができる。 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3						3	
2重積分を用いて、簡単な立体の体積を求めることができる。 3 微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 3 3 3 3 3 3 3 3 3 3						3	
 微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 3 簡単な1階線形微分方程式を解くことができる。 定数係数2階斉次線形微分方程式を解くことができる。 定数係数2階斉次線形微分方程式を解くことができる。 独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。 条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。 1/欠元のデータを整理して、平均・分散・標準偏差を求めることができる。 1/欠元のデータを整理して散布図を作成し、相関係数・回帰直線を求めることができる。 1変数関数の局所的な1次近似式を求めることができる。 1変数関数の一月の協力を求めることができる。 1変数関数の一月のは式を求めることができる。 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 集合に関する基本的な概念を理解し、集合演算を実行できる。 集合に関する基本的な概念を理解し、集合演算を実行できる。 集合の間の関係(関数)に関する基本的な概念を説明できる。 							
簡単な1階線形微分方程式を解くことができる。					微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解	3	
定数係数2階斉次線形微分方程式を解くことができる。 3 独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。 3 条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単 な場合について確率を求めることができる。 1次元のデータを整理して、平均・分散・標準偏差を求めること ができる。 2次元のデータを整理して散布図を作成し、相関係数・回帰直線 を求めることができる。 2次元のデータを整理して散布図を作成し、相関係数・回帰直線 3 2 2 2 2 2 2 2 3 3						3	
独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。 条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。 1次元のデータを整理して、平均・分散・標準偏差を求めることができる。 2次元のデータを整理して、平均・分散・標準偏差を求めることができる。 2次元のデータを整理して散布図を作成し、相関係数・回帰直線を求めることができる。 簡単な1変数関数の局所的な1次近似式を求めることができる。 1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 本人の出ていて、複素数変数の指数関数の簡単な計算ができる。 集合に関する基本的な概念を理解し、集合演算を実行できる。 集合の間の関係(関数)に関する基本的な概念を説明できる。 集合の間の関係(関数)に関する基本的な概念を説明できる。 集合の間の関係(関数)に関する基本的な概念を説明できる。 4							
本を理解し、簡単な場合について、確率を求めることができる。 3					独立試行の確率、余事象の確率、確率の加法定理、排反事象の確		
お場合について確率を求めることができる。					率を理解し、簡単な場合について、確率を求めることができる。		
かできる。 2次元のデータを整理して散布図を作成し、相関係数・回帰直線 2次元のデータを整理して散布図を作成し、相関係数・回帰直線 3 3 3 3 3 3 3 3 3					な場合について確率を求めることができる。	3	
を求めることができる。 5					ができる。	3	
1変数関数のテイラー展開を理解し、基本的な関数のマクローリ 3 2 2 2 2 2 2 3 3 3						3	
専門的能力 分野別の専門工学 情報系分野 情報数学・情報理論・情報要論・情報要論・ 集合の間の関係(関数)に関する基本的な概念を説明できる。 4					簡単な1変数関数の局所的な1次近似式を求めることができる。	3	
専門的能力 情報系分野 情報数学・情報理論・情報要論・情報要論・情報要論・情報要論・情報要論・情報理論・情報理論・情報理論・情報理論・情報理論・情報理論・情報理論・情報理						3	
専門的能力						3	
						4	
	専門的能力	分野別の専 門丁学	情報系分野	情報数学・ 情報理論	集合の間の関係(関数)に関する基本的な概念を説明できる。	4	
プールト域に関する基本的は低点で説明してる。 4		, , ,		INTACTIME	ブール代数に関する基本的な概念を説明できる。	4	

	論:	埋代数と述語論理に関する基本	的な概念を説明できる。	4
		散数学に関する知識をアルゴリ ができる。	ズムの設計、解析に利用する。	- 4
		ンピュータ上での数値の表現方 きる。	法が誤差に関係することを説明	^A 4
		ンピュータ上で数値計算を行う きる。	際に発生する誤差の影響を説明	^月 4
		ンピュータ向けの主要な数値計 明できる。	¥ 4	
	情	報量の概念・定義を理解し、実	際に計算することができる。	4
	情	報源のモデルと情報源符号化に	4	
	通	信路のモデルと通信路符号化に	ついて説明できる。	4
評価割合				
	中間試験	期末試験	課題(レポート12回分)	合計
総合評価割合	100	100	50	250
得点	100	100	50	250