岐阜	 丁業高等	 専門学校	開講年度	令和05年度 (2	 2023年度)	授業	科目	自動制御				
		A) LL IT		D11005干/文(2	2025-12)		:17 L	רון נקו נעב				
科目基礎情報												
科目番号 0116 授業形態 講義				科目区分 単位の種別と単位。			専門 / 選択 数 学修単位: 2					
開設学科					対象学年		5					
開設期	前期			週時間数 前期:2		····································						
	対対				1. =			制御工学(足立 修一(著),1999.03)				
担当教員												
到達目標												
①伝達関数を用いたシステムの入出力表現ができ、ブロック線図を用いてシステムを表現することができる。 ②フィードバック制御系,及び,システムやフィードバック制御系の安定判別法について説明できる。 ③システムやフィードバック制御系の過渡特性について、インパルス応答・ステップ応答を用いて説明できる。 ④システムやフィードバック制御系の周波数特性について、ボード線図を用いて説明できる。 ⑤システムやフィードバック制御系の定常特性について、定常偏差を用いて説明できる。 ⑥制御系の設計について説明できる。 岐阜高専ディプロマポリシー: (D)												
ルーブリ	リック				1							
○ /=\+BB\\	/ 		理想的な到達レ		標準的な到達レイ		- 7	未到達なレベル(不可)				
①伝達関数を用いたシステムの入出力表現ができ,ブロック線図を用いてシステムを表現することができる。			力表現・ブロッ 科書の演習問題 題を8割以上解ぐ	放を用いたシステムの入出 ・ブロック線図に関する教 寅習問題や電験2種程度の問 以上解くことができる。 伝達関数を用いたシステムの入出 力表現・ブロック線図に関する教 科書の演習問題や電験2種程度の問 関を7割以上解くことができる。		する教 程度の問 きる。	題を6割以上解くことができない。					
②フィードバック制御系,及び ,システムやフィードバック制御 系の安定判別法について説明でき る。			。 ステムやフィー	制御系,及び,シ ドバック制御系の する教科書の演習 程度の問題を8割以 きる。	系の ステムやフィードバック制御系の		フィードバック制御系,及び,システムやフィードバック制御系の安定判別法に関する教科書の演習問題や電験2種程度の問題を6割以上解くことができない。					
③システムやフィードバック制御 系の過渡特性について、インバル ス応答・ステップ応答を用いて説 明できる。			" の過渡特性, 及 : 答・ステップ応	ードバック制御系 び,インパルス応 答に関する教科書 験2種程度の問題を 上ができる。	システムやフィードバック制御系 の過渡特性,及び,インパルス応 答・ステップ応答に関する教科書 の演習問題や電験2種程度の問題を 7割以上解くことができる。		『ルス応 る教科書 の問題を	システムやフィードバック制御系 の過渡特性,及び,インパルス応 答・ステップ応答に関する教科書 の演習問題や電験2種程度の問題を 6割以上解くことができない。				
④システムやフィードバック制御 系の周波数特性について、ボード 線図を用いて説明できる。			『 の周波数特性, 』 └ に関する教科書	テムやフィードバック制御系 数数特性,及び,ボード線図 「る教科書の演習問題や電験 度の問題を8割以上解くこと 「るるる。」		システムやフィードバック制御系の周波数特性,及び,ボード線図に関する教科書の演習問題や電験2種程度の問題を6割以上解くことができない。						
⑤システムやフィードバック制御 系の定常特性について、定常偏差 を用いて説明できる。			』 の定常特性・定 ■ 科書の演習問題	の定常特性・定常偏差に関する教 科書の演習問題や電験2種程度の問		システムやフィードバック制御系の定常特性・定常偏差に関する教科書の演習問題や電験2種程度の問題を7割以上解くことができる。		システムやフィードバック制御系の定常特性・定常偏差に関する教 科書の演習問題や電験2種程度の問題を6割以上解くことができない。				
⑥制御系の設計について説明できる。			習問題や電験2和 以上解くことが	習問題や電験2種程度の問題を8割 以上解くことができる。		制御系の設計に関する教科書の演 習問題や電験2種程度の問題を7割 人上解くことができる。		制御系の設計に関する教科書の演 習問題や電験2種程度の問題を6割 以上解くことができない。				
		目との関	係									
教育方法	等											
概要		古典制御	理論」と「現代制御	即理論」の基礎を習	得する。		-	られている自動制御の理論である「				
授業の進め	方・方法	(事前準 英語導入	教科書とプリントと 備の学習)応用数学 計画:Technical te	学Bのラブラス変換を erms	を復習をしておくる	こと。	EC 62	-				
注意点			容を確実に身につい 複評価には教室外等			0						
授業の属	性・履修	圣上の区分	1									
□ アクテ	ィブラーニ	ング	☑ ICT 利用		☑ 遠隔授業対応	,		□ 実務経験のある教員による授業				
授業計画												
		週	授業内容			週ごとの	到達目標					
	1stQ	1週	制御工学の全体像	 御工学の全体像		の全体像について(2時間) (授業外学習・事 を解く(約2時間)		前)事前にLMSに提示した制御工学の資料を調べて、まとめておく(約 後)制御工学の全体像に関する問題				
前期		2週	複素数とラプラス変	素数とラプラス変換			複素数とラプラス変換を理解する。 (授業外学習・事前) 応用数学Bのラプラス変換について復習しておく(約2時間) (授業外学習・事後) 複素数とラプラス変換に関する問題を解く(約2時間)					
		3週	線形時不変(LTI)	駅形時不変(LTI)システムの表現(ALのレベルC)			線形時不変(LTI)システムの表現を理解する。 (授業外学習・事前) 事前にLMSに提示したLTIシス テムの表現についての資料を調べて、まとめておく (約2時間) (授業外学習・事後) LTIシステムの表現に関する問 題を解く(約2時間)					

		4週	伝達関数(ALのレベルC)		伝達関数を理解する。 (授業外学習・事前) 事前にLMSに提示した伝達関数についての資料を調べて、まとめておく(約2時間) (授業外学習・事後) 伝達関数に関する問題を解く (約2時間)						
		5週	周波数伝達関数(ALのレベルC)		周波数伝達関数を理解する。 (授業外学習・事前) 事前にLMSに提示した周波数伝達関数についての資料を調べて、まとめておく(約2時間) (授業外学習・事後) 周波数伝達関数に関する問題を						
		6週	状態空間表現(ALのレベルC)		表現についての資料 間) (授業外学習・事	解する。 前)事前にLMSに提示した状態空間 対を調べて、まとめておく(約2時 後)状態空間表現に関する問題を解					
		7週	フィードバック制御とフィードフォ! レベルC)	フード制御(ALの	く (約2 時間) フィードバック制御とフィードフォワード制御を理解する。 (授業外学習・事前) 事前にLMSに提示したフィードバック制御とフィードフォワード制御についての資料を調べて、まとめておく(約2 時間) (授業外学習・事後)フィードバック制御とフィードフォワード制御に関する問題を解く(約2 時間)						
		8週	LTIシステムの安定性(ALのレベルC)		LTIシステムの安定 (授業外学習・事能 テムの安定性につい (約2時間)	性を理解する。 前)事前にLMSに提示したLTIシスいての資料を調べて、まとめておく も、LTIシステムの安定性に関する					
	2ndQ	9週	フィードバックシステムの安定性(Al	LのレベルB)	(授業外学習・事情 バックシステムの とめておく(約2月	髪) フィードバックシステムの安定│					
		10週	制御系の過渡特性(ALのレベルC)		過渡特性についての 2 時間)	を理解する。 前)事前にLMSに提示した制御系の D資料を調べて、まとめておく(約 b)制御系の過渡特性に関する問題					
		11週	制御系の定常特性(ALのレベルC)		制御系の定常特性を (授業外学習・事態 定常特性についての 2時間)	を理解する。 前)事前にLMSに提示した制御系の D資料を調べて、まとめておく(約 後)制御系の定常特性に関する問題					
2		12週	制御系設計仕様(ALのレベルC)		制御系設計仕様を理	前)事前にLMSに提示した制御系設 資料を調べて、まとめておく(約					
		13週	古典制御理論による制御系設計		古典制御理論による制御系設計を理解する。 (授業外学習・事前) 事前にLMSに提示した古典制御理論による制御系設計についての資料を調べて、まとめておく(約2時間) (授業外学習・事後) 古典制御理論による制御系設計に関する問題を解く(約2時間)						
		14週	現代制御による制御系設計		現代制御による制御系設計を理解する。 (授業外学習・事前) 事前にLMSに提示した現代制御による制御系設計についての資料を調べて、まとめておく(約2時間) (授業外学習・事後)現代制御による制御系設計に関する問題を解く(約2時間)						
		15週	期末試験		制御理論を理解する。						
		16週	期末試験の解答の解説・自動制御の記	まとめ	制御理論を理解する。 (授業外学習・事後) 期末試験や自動制御の復習を行う(約4時間)						
モデルコアカリキュラムの学習内容と到達目標											
分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週											
評価割合											
			期末試験 教室外学習等			合計					
総合評価割る	<u></u>		100 25		125						
得点			100	25		125					