沼津工業高等専門学校		開講年度	令和02年度(2	2020年度)	授業科目	化学基礎			
科目基礎情報									
科目番号	科目番号 2020-125 科目区分 一般 / 必修								
授業形態	授業			単位の種別と単位数	数 履修単位:	履修単位: 2			
開設学科	機械工学科			対象学年	1	1			
開設期	通年			週時間数	2				
教科書/教材	改訂 化学基礎(東京書籍),ニューアチーブ 化学基礎(東京書籍),ニューグローバル化学基礎+化学(東京書籍),フォトサイエンス化学図録(数研出版)								
担当教員	小林 美学								
到读日標									

|到達日標

- (1) 物質を化学結合の概念を用いて分類し,その性質を示すことができる。 (2) 化学変化を「酸と塩基」の概念を用いて分類し,その役割を示すことができる。 (3) 化学変化を「酸化と還元」の概念を用いて分類し,その役割を示すことができる。 (4) 化学変化や化学的性質について定量的な扱いができる(物質量,反応の量的関係,中和滴定, pHの計算ができる)。 (5) 代表的なイオンや化学物質を名前や化学式で示す事ができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	具体的な物質について,原子間と 分子間のそれぞれの結合を記述で きる。また,その結合の種類から およその性質を推測できる。	 5種類の化学結合の成り立ちや性質 を理解できる	5種類の化学結合の成り立ちや性質 を理解できない
評価項目2	水素イオンの移動による酸と塩基 のはたらきから, 化学反応を説明 できる。	化学反応における酸と塩基のはた らきを理解できる	化学反応における酸と塩基のはた らきを理解できない
評価項目3	酸化と還元のはたらきから, 化学 反応式を組み立てることができる	化学反応における酸化と還元のは たらきを理解できる	化学反応における酸化と還元のは たらきを理解できない。
評価項目4	物質量,反応の量的関係,中和滴 定, pHの計算などの応用的な計算 ができる。	物質量, 反応の量的関係, 中和滴 定, pHの計算などの基本的な計算 ができる。	物質量, 反応の量的関係, 中和滴 定, pHの計算などの基本的な計算 ができない。
評価項目5	教科書で扱うイオンや化学物質を 名前や化学式で示す事ができる。	代表的なイオンや化学物質を名前 や化学式で示す事ができる。	代表的なイオンや化学物質を名前 や化学式で示す事ができない。

学科の到達目標項目との関係

【本校学習・教育目標(本科のみ)】

教育方法等

概要	中学校で学習した内容を基礎として、日常生活や社会との関連を図りながら物質とその変化への関心を高め、観察、実験などを通して、化学的に探究する能力と態度を育てるとともに、化学の基本的な概念や原理・法則、化学の果たす役割を理解させ、科学的な見方や考え方を養う。本講義を通して、化学の基本的な概念や原理・法則を工学分野に適用できることを学ぶ。
授業の進め方・方法	授業は遠隔形式で行う。毎回,講義と演習,確認問題を行う。試験は年に2回の定期試験として実施する。
注意点	評価については、評価割合に従って行います。ただし、適宜再試や追加課題を課し、加点することがあります。また遠隔授業において課題の提出に支障がある場合を考慮して、試験の点数が合格点に達している場合は合格とすることがあります。

授業計画

		週	授業内容	週ごとの到達目標
		1週	ガイダンス 物質の構成(純物質と混合物,物質の分離)	純物質と混合物の区別が説明できる。混合物の分離法 について理解でき、分離操作を行う場合、適切な分離 法を選択できる。ろ過ができる。
		2週	物質の成分と構成元素(元素,単体と化合物,元素の確認)	物質が原子からできていることを説明できる。単体と 化合物がどのようなものか具体例を挙げて説明できる 。同素体がどのようなものか具体例を挙げて説明でき る。沈殿生成を含む代表的な成分元素の検出方法につ いて説明できる。
		3週	物質の成分と構成元素(物質の三態と状態間の変化 , 粒子の熱運動)	物質を構成する分子・原子が常に運動していることが 説明できる。物質の三態とその状態変化を説明できる 。セルシウス温度と絶対温度の間で換算ができる。
24.00	1stQ	4週	原子の構造と元素の周期表(原子, 同位体)	原子の構造(原子核・陽子・中性子・電子)や原子番号、質量数を説明できる。同位体について説明できる。放射性同位体とその代表的な用途について説明できる。
前期		5週	原子の構造と元素の周期表(原子の電子配置,元素の 周期表)	原子の電子配置について電子殻を用い書き表すことが できる。価電子の働きについて説明できる。原子番号 から価電子の数を見積もることができ、価電子から原 子の性質について考えることができる。
		6週	化学結合(イオンの生成, イオンの種類)	原子のイオン化について説明できる。元素の性質を周 期表(周期と族)と周期律から考えることができる。
		7週	化学結合(イオンの分類, イオン半径, イオン結合と イオン結晶)	代表的なイオンを化学式で表すことができる。イオン 式とイオンの名称を説明できる。イオン結合について 説明できる。イオン結合性物質の性質を説明できる。 イオン性結晶がどのようなものか説明できる。
		8週	化学結合 (共有結合と分子の形成)	共有結合について説明できる。構造式や電子式により 分子を書き表すことができる
	2ndQ	9週	化学結合(配位結合,電気陰性度と分子の極性)	配位結合の成り立ちについて理解できる。電気陰性度の概念を理解し,その値から結合の極性の大きさを説明できる。

10回											
13世			10週	化学組品)	告合(水素結合	合,ファンデルワールスカ,分子結	□ 結晶の性質について説明でき がどのようなものか説明でき	説明できる。 る。自由電子 る。金属の性	共有結合の と金属結合 賃を説明で		
12回 物質に大学反応式(原子の目別簿前、原子前、分子 できる。大衆に存在する場で行動になったのできる。となった。			11週	化学紀	告合(共有結合	合の結晶, 金属結晶・物質の分類)	できる。天然に存在する原子 、その相対質量の平均値とし 説明できる。分子量・式量か	・が同位体の混 ・て原子量を用	混合物であり 引いることを		
13回 お助本子、物質量と化学反応式(アボカトロ数と物質 食料である。			12週		』と化学反応3 は量)	式(原子の相対質量,原子量,分子	できる。天然に存在する原子 、その相対質量の平均値とし 説明できる。分子量・式量力	・が同位体の混 ・て原子量を用	混合物であり 引いることを		
15回 物質量のいるいろいろいうでは、作りでは、			13週		女字,物質量。	と化学反応式(アボガドロ数と物質	量を有効数字を考慮して正し ボガドロ定数を理解し、物質	く表すことか	ができる。ア		
15週 物質量のいろいろな計算、物質量と化学反応式(溶液 の液度)			14週	物質量	量と化学反応:	式(モル質量,モル体積)	物質の質量と物質量の関係を と物質量の関係を説明できる		気体の体積		
1回 物質量と代字及い、代字及の本の、作意の本の大きを 1回 物質量と代字及い、代字及の本の、作者を 1回 物質量と代字及い、代字及本の水の大き 1回 物質量と代字及の本の 1回 物質量と代字及の本の 1回 物質量と代字及の本の 1回 物質量と代字及の表の 1回 物質量と代字及の表の情報を 1回 物質量と代字及の情報を 1回 物質量と代字及の表の情報を 1回 物できる。 1回 物できる。 1回 1回 1回 1回 1回 1回 1回 1			15週			な計算, 物質量と化学反応式(溶液	粒子の個数,物質の質量, 気 て変換できる。質量パーセン 量パーセント濃度の計算がて	粒子の個数,物質の質量,気体の体積を物質量を介して変換できる。質量パーセント濃度の説明ができ、質量パーセント濃度の説明ができ、質量パーセント濃度の計算ができる。モル濃度の説明が			
1週 物質量と化学反応式(化学反応式の表す室約関係) 化学反応工用いて化学室論的は音ができる。 2週 競と塩基 (限と塩温の性質) 酸と塩基の定義、広い窓 株の酸と塩馬 (使生類の施設) 水素イオン藻度 (アレンドギマ) を規則できる。			16週	物質量	遣と化学反応:	式(化学反応式)・演習		係数を理解し	て組み立て		
2週			1週	物質量	量と化学反応:	式(化学反応式の表す量的関係)		ひ計算ができ	きる。		
3回			2週	酸と塩味の酢	基(酸と塩基 と塩基,酸の	基の性質,酸と塩基の定義,広い意 と塩基の価数)	−−−。酸・塩基の化学式から酸・	- ッドまで)を 塩基の価数を	説明できる つけること		
おけっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ			3週	酸と塩ン濃度	≣基(酸·塩基 ₹とpH)	この強弱,水素イオン濃度,水素イン	¹ でき、pH から水素イオン濃	電離度から酸・塩基の強弱を説明できる。pH でき、pH から水素イオン濃度を計算できる。			
おりまして 日本の		3rdQ	4週	酸と塩)	ā基(中和反)	応と塩の生成,塩の種類,塩の性質	概念と使用法について説明できる。中和反応がどのよ うな反応であるか説明できる。塩を分類できる。塩の				
6週 酸化遠元反応(酸化と遠元、酸化数,酸化遠元反応と 酸化氮元反応(酸化数)			5週	酸と塩)	基(中和反应	応の量的関係, 中和滴定, 滴定曲線	中和滴定の計算ができる。中選択について説明できる。	和滴定の操作	や指示薬の		
おりました まりました まり			6週			化と還元,酸化数,酸化還元反応と	酸化還元反応について説明で りあてることができる。酸化	できる。原子に に数の増減から	一酸化数をわ ら反応を見分		
後期 10週 他利と還元利の量的関係)			7週	酸化還元反応	還元反応(酸化 で、酸化剤とは	化剤と還元剤,電子の授受と酸化還 還元剤のはたらきの強さ)	・ の半反応式を記述できる。キ	4反応式から酸	が 記念 記記 記記 記記 記記 記記 記記 記記 記記 記記 記記 記記 記記		
10週 日本の 日本			8週				酸化剤・還元剤のはたらきの。酸化還元滴定の計算ができ		説明できる		
10週 酸化還元反応(電池のしくみ,実用電池,金属の製錬 池についてその反応を説明できる。一次電池の種類を説明できる。 (代表的な金属の製錬について説明できる) 11週 酸化還元反応(電気分解,電気分解の量的関係) 電気分解反応を説明できる。アアラデーの法則による計算ができる。 で表の特別 12週 酸化還元反応(金属の製錬、電解精錬,溶融塩電解 代表的な金属の製錬について説明できる。電気分解の利用として調の精錬など,実社会における技術の利用例を説明できる。 で表の特別 利用として調の精錬など,実社会における技術の利用例を説明できる。 で表の性質、用途、また、その再利用など生活とのかかわりについて説明できる。 大部への対処の方法を理解し、対処できる。レポート作成の手順を理解し、対象を用いて財を求めることができる。 大部への対処の方法を理解し、対処できる。レポート作成の手順を理解し、レポート作成の手順を理解し、	後期		9週	酸化遗	還元反応(金属	属のイオン化傾向, 金属の反応性)			反応性につ		
11回 日本			10週	酸化還)	還元反応(電 泛	他のしくみ,実用電池,金属の製錬	□ 池についてその反応を説明で ■ 説明できる。二次電池の種類	池についてその反応を説明できる。一次電池の種類を 説明できる。二次電池の種類を説明できる。代表的な			
4thQ			11週	酸化遗	還元反応 (電気	気分解, 電気分解の量的関係)		ファラデーの	法則による		
13週			12週	酸化遗,水酸	電元反応(金原 ととサーフリング	属の製錬, 電解精錬, 溶融塩電解 ムの製造)	利用として銅の精錬など,実	利用として銅の精錬など,実社会における技術の利用			
14週		4thQ	13週	人間生	≦活の中の化≒	学,化学とその役割	その性質、用途、また、その再利用など生活とのかか わりについて説明できる。洗剤や食品添加物等の化学 物質の有効性、環境へのリスクについて説明できる。				
16週			14週				実験の基礎知識を持っている 理解し、対処できる。レポー , レポート作成できる。ガラ る。試薬の調整ができる。代 できる。代表的な無機化学反	ら。事故への対 - ト作成の手順 ラス器具の取り	原を理解し)扱いができ		
モデルコアカリキュラムの学習内容と到達目標 分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週 代表的な金属やプラスチックなど有機材料について、その性質、用途、また、その再利用など生活とのかかわりについて説明できる。 洗剤や食品添加物等の化学物質の有効性、環境へのリスクについ 3 で説明できる。 物質が原子からできていることを説明できる。 3 単体と化合物がどのようなものか具体例を挙げて説明できる。 3					対数を用いたpH計算,演習		1'				
分類 学習内容 学習内容の到達目標 到達レベル 授業週 【表的な金属やプラスチックなど有機材料について、その性質、用途、また、その再利用など生活とのかかわりについて説明できる。 3 基礎的能力 化学(一般) 化学(一般) 洗剤や食品添加物等の化学物質の有効性、環境へのリスクについて説明できる。 3 一般 一級	エデリー	レー・		一一一一 	カ突 レ列達						
(代表的な金属やプラスチックなど有機材料について、その性質、 用途、また、その再利用など生活とのかかわりについて説明できる。 洗剤や食品添加物等の化学物質の有効性、環境へのリスクについる 3		17 71 71						到達レベル	授業週		
基礎的能力 自然科学 化学(一般) 化学(一般) 次額や食品添加物等の化学物質の有効性、環境へのリスクについて説明できる。 3 物質が原子からできていることを説明できる。 3 単体と化合物がどのようなものか具体例を挙げて説明できる。 3						代表的な金属やプラスチックなど 用途、また、その再利用など生活					
単体と化合物がどのようなものか具体例を挙げて説明できる。 3	基礎的能力	1 自然科学			化学(一般)	洗剤や食品添加物等の化学物質の	有効性、環境へのリスクについ	3			
同素体がどのようなものか具体例を挙げて説明できる。 3								3			

			1_	Ta
		純物質と混合物の区別が説明できる。	3	前1
		混合物の分離法について理解でき、分離操作を行う場合、適切な 分離法を選択できる。	3	前1
		物質を構成する分子・原子が常に運動していることが説明できる	3	#12
		0	_	前3
		物質の三態とその状態変化を説明できる。	3	前3
		原子の構造(原子核・陽子・中性子・電子)や原子番号、質量数を 説明できる。	3	前4
		同位体について説明できる。	3	前4
		放射性同位体とその代表的な用途について説明できる。	3	前4
		原子の電子配置について電子殻を用い書き表すことができる。	3	前5
		価電子の働きについて説明できる。	3	前5
		原子のイオン化について説明できる。	3	前6
		代表的なイオンを化学式で表すことができる。	3	前7
		原子番号から価電子の数を見積もることができ、価電子から原子の性質について考えることができる。	3	前5
		元素の性質を周期表(周期と族)と周期律から考えることができる。	3	前5
		イオン式とイオンの名称を説明できる。	3	前7
		イオン結合について説明できる。	3	前7
		イオン結合性物質の性質を説明できる。	3	前7
		イオン性結晶がどのようなものか説明できる。	3	前7
		共有結合について説明できる。	3	前8
		構造式や電子式により分子を書き表すことができる。	3	前8
		自由電子と金属結合がどのようなものか説明できる。	3	
		金属の性質を説明できる。	3	
		原子の相対質量が説明できる。	3	前12
		天然に存在する原子が同位体の混合物であり、その相対質量の平 均値として原子量を用いることを説明できる。	3	前12
		アボガドロ定数を理解し、物質量(mol)を用い物質の量を表すことができる。	3	前13
		分子量・式量がどのような意味をもつか説明できる。	3	前13
		気体の体積と物質量の関係を説明できる。	3	前14
		化学反応を反応物、生成物、係数を理解して組み立てることがで きる。	3	前16
		化学反応を用いて化学量論的な計算ができる。	3	後1
		電離について説明でき、電解質と非電解質の区別ができる。	3	後3
		質量パーセント濃度の説明ができ、質量パーセント濃度の計算ができる。	3	
		モル濃度の説明ができ、モル濃度の計算ができる。	3	<u> </u>
		酸・塩基の定義(ブレンステッドまで)を説明できる。	3	後2
		酸・塩基の化学式から酸・塩基の価数をつけることができる。	3	後2
		電離度から酸・塩基の強弱を説明できる。	3	後3
		pHを説明でき、pHから水素イオン濃度を計算できる。また、水素イオン濃度をpHに変換できる。	3	後3
		中和反応がどのような反応であるか説明できる。	3	後4
		中和滴定の計算ができる。	3	後5
		酸化還元反応について説明できる。	3	後6
		イオン化傾向について説明できる。	3	後9
		金属の反応性についてイオン化傾向に基づき説明できる。	3	後9
		ダニエル電池についてその反応を説明できる。 公芸療池についてその反応を説明できる。	3	後10 後10
		鉛蓄電池についてその反応を説明できる。 一次電池の種類を説明できる。	3	後10 後10
			3	1
		二次電池の種類を説明できる。 電気分解反応を説明できる。	3	後10
		電気分解の利用として、例えば電解めっき、銅の精錬、金属のリ サイクルへの適用など、実社会における技術の利用例を説明でき		-
		る。 ファラデーの法則による計算ができる。	3	
		実験の基礎知識(安全防具の使用法、薬品、火気の取り扱い、整理整頓)を持っている。	3	前2
		事故への対処の方法(薬品の付着、引火、火傷、切り傷)を理解し 、対応ができる。	3	前2
		測定と測定値の取り扱いができる。	3	
//~244 -11 =A	ルル中で			
化学実験	化学実験	有効数字の概念・測定器具の精度が説明できる。	3	前13
化学実験	化学実験	レポート作成の手順を理解し、レポートを作成できる。	3	
化学実験	化学実験			前13 前2

			試薬の調製ができる	<u>. </u>		3		
			代表的な気体発生の実験ができる。			3		
			代表的な無機化学反	 「応により沈殿を作り、ろ過ができる。		3	前2	
評価割合	評価割合							
		試験		課題	合計			
総合評価割合		80		20	100			
基礎的能力		80		20 100				
専門的能力		0		0 0				
分野横断的能力		0		0	0			