沼津工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	電気電子材料		
科目基礎情報								
科目番号	2018-179			科目区分	専門 / 必	修		
授業形態	授業			単位の種別と単位数	数 学修単位	学修単位: 2		
開設学科	電気電子工学科			対象学年	4	4		
開設期	後期			週時間数	2			
教科書/教材 「これからスタート!電気電子材料」 伊藤國雄、原田寛治共著、電気書院								
担当教員	大澤 友克							
到连日堙								

到達目標

- 1. 水素原子の構造を説明できる。 2. バンド図により、金属、絶縁体、半導体の違いを説明できる。 3. 金属の電気伝導特性を説明できる。 4. 真性半導体および不純物半導体の導電率の温度変化を、定性的に説明できる。 5. 誘電体、磁性体の電磁的性質の起源を説明できる。

ルーブリック

70 2332								
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安					
水素原子の構造を説明できる。	ボーアの理論からボーア半径を導き、水素原子の構造を説明できる。	水素原子の構造を説明できる。	水素原子の構造を説明できない。					
バンド図により、金属、絶縁体、 半導体の違いを説明できる。	エネルギーバンドの形成とフェルミ・ディラック分布を理解し、エネルギーバンド図により、金属、絶縁体、半導体の違いを説明できる。	バンド図により、金属、絶縁体、 半導体の違いを説明できる。	バンド図により、金属、絶縁体、 半導体の違いを説明できない。					
金属の電気伝導特性を説明できる。	金属の電気伝導特性を定式化し、 説明できる。	金属の電気伝導特性を説明できる。	金属の電気伝導特性を説明できない。					
真性半導体および不純物半導体の 導電率の温度変化を、定性的に説 明できる。	真性半導体および不純物半導体の 導電率の温度変化を、定量的に説 明できる。	真性半導体および不純物半導体の 導電率の温度変化を、定性的に説 明できる。	真性半導体および不純物半導体の 導電率の温度変化を、定性的に説 明できない。					
誘電体、磁性体の電磁的性質の起源を説明できる。	誘電体、磁性体の電磁的性質の起源を説明できる。 半導体のエネルギーバンド図を説明できる。	誘電体、磁性体の電磁的性質の起源を説明できる。	誘電体、磁性体の電磁的性質の起源を説明できる。					

学科の到達目標項目との関係

【本校学習・教育目標(本科のみ)】 2

教育方法等

概要	情報通信技術の急速な進歩は、現代社会を大きく変えつつある。それらの進歩には各種装置を構成する電気電子材料の 知識が必要不可欠となっている。これは、単に材料開発をおこなおうとしている開発者だけでなく、それらを用いて作 製された電子回路等を効率よく使おうとする技術者にとっても、きわめて重要な意味を持つと考えられる。授業では主 に、電子回路等で扱う主な材料である金属、半導体、絶縁体、誘電体、磁性体の電磁的特性を学ぶ。導入として、量子 力学を始めとした物理学の基礎を学ぶ。
授業の進め方・方法	授業は主に講義形式でおこなう。適宜課題を課すので、提出期限を厳守すること。
注意点	1.試験や課題レポート等は、JABEE 、大学評価・学位授与機構、文部科学省の教育実施検査に使用することがあります
	」。 12.授業参観される教員は当該授業が行われる少なくとも1週間前に教科目担当教員へ連絡してください。

授業計画

		週	授業内容	週ごとの到達目標			
		1週	導入	学習・教育目標、授業概要・目標、日程、評価方法と 基準の説明。 なぜ電気電子材料を学ぶのか理解できる。 電子の電荷量や質量などの基本性質を説明できる。 エレクトロンボルトの定義を説明し、単位換算等の計 算ができる。			
		2週	水素原子構造と量子論	シュレディンガー方程式(一次元井戸型ポテンシャル)が解ける。 水素原子の構造(ボーアの理論)を説明できる。 電子スピンとパウリの排他原理を理解し、原子の電子 配置を説明できる。			
	3rdQ	3週	固体における化学結合	原子間力と化学結合、イオン結晶、共有結合、金属結 晶、ファンデルワールス結晶などが説明できる。			
		4週	結晶構造	原子半径と結晶の充填率、X線回折の計算ができる。			
後期		5週	金属の電気伝導	金属の電気的性質を説明し、移動度や導電率の計算ができる。			
		6週	帯域理論(バンド理論) 1	フェルミ·ディラックの統計を理解できる。状態密度を 説明できる。			
		7週	帯域理論(バンド理論) 2	エネルギーバンドの形成を理解し、金属と絶縁体のエ ネルギーバンド図を説明できる。			
		8週	半導体の導電率1	真性半導体の導電率を計算できる。			
4		9週	半導体の導電率 2	不純物半導体の導電率を計算できる。 半導体のエネルギーバンド図を説明できる。			
	4thO	10週	半導体の導電率 3	不純物半導体の導電率を計算し、温度変化を説明でき る。			
	TulQ	11週	p-n接合における電子現象	p-n接合の整流特性を説明できる。			
		12週	様々な半導体材料	発光ダイオードを説明できる。			
		13週	誘電体	誘電分極、誘電分極の機構を説明できる。			

				磁性材料、超伝導			磁性体の分類、超伝導体の説明ができる。				
				まとと	とめ			まとめ			
		16ì	围								
モデルコ	アカ!	ノキュ	ラムの	学習	内容と到達	目標					
分類 分野			分野		学習内容	学習内容の到達目標			到達レベル	授業週	
						電子の電荷量や質量	量などの基本性質を	を説明できる。		4	
						エレクトロンボルトの定義を説明し、単位換算等の計算ができる。			4		
						原子の構造を説明できる。				4	
					I -	パウリの排他律を理解し、原子の電子配置を説明できる。				4	
専門的能力	分野 門工	分野別の専 門工学 電気・電 系分野		電子		結晶、エネルギーバンドの形成、フェルミ・ディラック分布を理解し、金属と絶縁体のエネルギーバンド図を説明できる。				4	
						金属の電気的性質を説明し、移動度や導電率の計算ができる。				4	
						真性半導体と不純物半導体を説明できる。				4	
						半導体のエネルギーバンド図を説明できる。			4		
						pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の電流一電圧特性を説明できる。				4	
評価割合	-									•	
中間試験			期末試験		レポート	態度	ポートフォリオ	その他	合計	-	
総合評価割合 40		40	40		1	20	0	0	0	100	
基礎的能力 0		0	0			0	0	0	0	0	
専門的能力 4		40	40 4			20	0	0	0	100	
分野横断的能力 0		0			0	0	0	0	0		