沼津	開講年	度	令和05年	F度 (2	023年度)	授	業科目	自動制御				
科目基礎情報												
科目番号 2023-432			2				科目区分		専門 / 必修			
授業形態		授業					単位の種別と単	位数	学修单位: 2			
開設学科		制御情報					対象学年		4			
開設期		通年							前期:2 後	期:2		
教科書/教材							1			74112		
担当教員	, <u>,</u>	矢入 聡										
	1	J/// 4/0										
到達目標 1. 常微分方程式を離散近似し、PID制御における時間応答の数値解を求めることができる(PID制御のシミュレーションができる). 2. 一次遅れ要素に対するPID制御の時間応答を導出できる. 3. 伝達関数における安定判別ができる. 4. 伝達関数における周波数応答が導出でき,ボード線図が描ける. 5. 与えられた設計仕様を満たすPID制御系の設計方法が理解できる. 6. 授業中に発言したり,課題レポートに独自の工夫を述べたりすることができる.												
ルーブリック												
			理想的な到	達レ	ベルの目安		標準的な到達レ	ベルの目]安	未到達レベルの目安		
1. 常微分方程式を離散近似し , PID制御における時間応答の数値 解を求めることができる(PID制御 のシミュレーションができる).			の理由を説 値 □PID制御 由を説明で □PID制御 解を求める	明で 器を きる におい こと	雛散化でき、	その理 その数値 の数値	□PID制御における時間応答の数値 ■ Wを求めることができる			□常微分方程式を離散化できない . □PID制御器を離散化できない. □PID制御における時間応答の数値解を求めることができない.		
2. 一次遅れ要素に対するPID制御の時間応答を導出できる.			加□一次遅れ	要素	に対するPIC できる(定値	が制御の	ハル人・1 ンナインヤル心合か得 中できる			□ラプラス変換の諸定理を導出できない. □一次遅れ要素における単位インパルス・インディシャル応答が導出できない. □一次遅れ要素に対するP制御の時間応答が導出できない.		
3. 伝達関数における安定判別ができる.			安定判別が □ゲイン余 ル軌跡を使 □フルビッ	□ナイキストの安定判別法による 安定判別ができる. □ゲイン余裕・位相余裕をベクト ル軌跡を使って説明できる. □フルビッツの安定判別法による 伝達関数の安定判別ができる.			□常微分方程式における伝達関数 が導出できる。 □伝達関数の安定性と極との関係 が説明できる。 □いずれか1つの安定判別法による 伝達関数の安定判別ができる。		wとの関係 別法による	□常微分方程式における伝達関数 が導出できない。 □伝達関数の安定性と極との関係 が説明できない。 □いずれの安定判別法による伝達 関数の安定判別もできない。		
4. 伝達関数における周波数応答が導出でき,ボード線図が描ける			一巡伝達関	□フィードバック制御系における 一巡伝達関数のボード線図を描く ことができ、安定性との関連を説 明できる.			□複素数の実部・虚部,絶対値 ,角度が計算できる. □伝達関数におけるサイン・位相 を求めることができる. □ゲイン・位相の式からボード線 図が描ける.			□複素数の実部・虚部,絶対値 ,角度が計算できない. □伝達関数におけるゲイン・位相 を求めることができない. □ゲイン・位相の式からボード線 図が描けない.		
5. 与えられた設計仕様を満たす PID制御系の設計方法が理解できる			□一次・二 る 計仕様を満 きる.	計仕様を満たすPID制御系が設計で			□一次・二次遅れ要素のインディシャル応答とそれぞれのパラメータとの関係が説明できる. □一次・二次遅れ要素における PID制御系の設計方法が理解できる.		Dパラメー る. こおける	□一次・二次遅れ要素のインディシャル応答とそれぞれのパラメータとの関係が説明できない。□一次・二次遅れ要素におけるPID制御系の設計方法が理解できない。		
6. 授業中に発言したり, 課題レポートに独自の工夫を述べたりすることができる.			発言できる □8割以上 て,創意エ	。 の課	回以上, 授美 題レポートに ることができ	こ対し	□授業中に発言したり, 指名されたら答えたりすることができる. □課題レポートに対して, 創意工夫することができる.			□授業中に発言したり, 指名されたら答えたりすることができない. □課題レポートに対して, 創意工夫することができない.		
学科の到												
実践指針(教育方法		針のレベル	(C3-3) 【本村	交学習	習・教育目標	(本科の	ひみ)】3【プロ]グラム	学習・教育	f目標 】 C		
産業機器は 概要 ・機械T学			はもちろん, 草 学の専門家でる の, 制御工学(もちろん,輸送機器や家電など,今やコンピュータ制御無くしては,生活が成り立たなくなった.すなわちの専門家であっても,制御の知識を要求される時代となった.本科目は,そのような要求を満たす技術者とり,制御工学に関する基礎的な事を学習し,社会に貢献できる人材となることを目的とする.								
授業の進め方・方法 古典制御の内容を中心に,講義形式で授業を進める.授業方法は,教員と学生との双方向を心掛け,学生参加型をした授業を実施する.隔週または3週に1回の頻度でレポート課題を課す.					双方向を心掛け,学生参加型を意識							
1.評価については,評価割合に従って行います. 注意点 2.この科目は学修単位科目であり,1単位あたり30時間の対面授業を実施します.併せて1単位あたり15時間の事習・事後学習が必要となります.						併せて1単位あたり15時間の事前学						
授業の属性・履修上の区分												
□ アクテ	□ アクティブラーニング□ ICT 利用□ 遠隔授業対応□ 実務経験のある教員による授業											
授業計画												
,	1	週						调ブレ	の到達日極	<u> </u>		
			シーバス・リーブロック部田 しま			週ごとの到達目標 トの書き方、教 カンザブレポットの書						
	1stQ	1週	科書の紹介	シハス・ルーノリック就明, レホートの 書の紹介			. 少自021, 我	・い言され、※ 自ら学ぶレポー		への書き方を説明できる.		
前期		2週	制御事例紹介 御の基礎概念 , モデリング	制御事例紹介(倒立振子・磁気浮上・制の基礎概念(専門用語:制御対象, こ				,制 自動制御,フィードバック制御の基礎概念や種類を説明できる.				
		3週		用語,	シミュレー	-ション(の概念,微分の	微分演	算を離散化	ごできる.		

	1	1		
		4週	シミュレーションの意味および計算の概要,時間微分の離散化,dx(t)/dt=t,x(0)=0の近似解(数値解)の 導出と考察(真値との比較)	常微分方程式の数値解を求めることができる.
		5週	シミュレーションの意義, RC回路とは, RC回路におけるシミュレーション(モデリング, 離散化, 逐次計算(時間応答))	RC回路におけるインディシャル応答の数値解を求めることができる.
		6週	フィードバック制御の意味・ブロック線図, P制御器と その離散化, RC回路におけるP制御のシミュレーショ ン	比例制御 (P制御) のシミュレーションができる.
		7週	P制御の意味と特徴、I制御器とその離散化、RC回路におけるI制御のシミュレーションおよび考察	積分制御(I制御)のシミュレーションができる.
		8週	シミュレーションに関する総復習	速度や加速度の概念,オームの法則,フックの法則,運動方程式を応用し,電気回路や単振動などの数値シュレーションの基礎的な問題を解くことができる
		9週	前期中間試験の解答・解説,成績集計結果,授業の感想・希望集計結果の説明	理解が不足している事柄を把握し, 自ら補うことがで きる.
		10週	RC回路におけるPI制御のシミュレーション, RC回路におけるD制御のシミュレーション(オイラー法によるD制御器の離散化における修正, 不連続関数の微分の回避)	微分制御 (D制御) のシミュレーションができる.
		11週	RC回路におけるD制御のシミュレーション(不連続関数の微分の回避),ラプラス変換の定義・ラプラス変換を用いた線形1階常微分方程式の解	ラプラス変換を用いて線形1階常微分方程式が解ける.
	2ndQ	12週	ラプラス変換の意義・定義, exp(-at)・1(t)・δ(t)のラプラス変換, ラプラス変換の諸定理(微分の定理)	定積分や関数の極限,合成関数の導関数を応用し,ラ プラス変換の諸定理を導出できる.
	Znav	13週	ラブラス変換を用いたRC回路のインディシャル応答の 導出,ラブラス変換の諸定理(線形法則,微分法則 ,積分法則,2階微分,2階積分,最終値の定理)	指数関数を応用し,ラプラス変換を用いて,RC回路におけるインディシャル応答が導出できる.
		14週	伝達関数の定義,RC回路・P・I・D制御器の伝達関数 ,RC回路の伝達関数を用いたインディシャル応答・単 位インパルス応答の導出	伝達関数を用いて、RC回路におけるインディシャル応答・単位インパルス応答が導出できる.
		15週	RC回路の伝達関数,一次遅れ要素におけるインディシャル応答,時定数・ゲイン定数,最終値の定理を用いたy(∞)の導出	関数の接線の方程式を応用し、一次遅れ要素における インディシャル応答(過渡特性・定常特性)の特徴を説 明できる.
		16週		
後期	3rdQ	1週	一次遅れ要素に対するP制御の閉ループ伝達関数, 一巡 伝達関数と閉ループ伝達関数との関係, 一次遅れ要素 に対するI制御の閉ループ伝達関数およびr(t)=1(t)に 対する最終値の導出, 二次遅れ要素の概要	ブロック線図が説明でき, 閉ループ伝達関数及び一巡 伝達関数を導出できる.
		2週	2 次遅れ要素の伝達関数一般形, ばね - 質点系 (1自由度振動系) の運動方程式とその解の振る舞い(単調減少・減衰振動), 臨界減衰係数	二次遅れ要素の一例としてバネー質点系(1自由度振動系)の時間応答の特徴を説明できる.
		3週	ばね-質点系と2次遅れ要素の伝達関数一般形との関係,固有角振動数と非減衰固有角振動数との関係,制御系の安定性の概要,安定・不安定システムの時間応答のシミュレーション	二次遅れ要素の伝達関数における, ゲイン定数, 非減 衰固有角振動数, 減衰比について説明できる.
		4週	2次遅れ要素におけるインディシャル応答・単位イン パルス応答の減衰比の影響(補足), 伝達関数の安定 性(特性方程式の解(極)と安定性との関係:分子多 項式がある場合,分母が2次式の場合)	制御システムにおける安定性の概念について説明できる.
		5週	部分分数分解, 伝達関数の安定性(1次, 2次), フルビッツの安定判別法の概要・行列式の計算	解の公式を応用し, 伝達関数における安定性について 説明できる.
		6週	1次・2次の伝達関数の安定判別,フルビッツの安定判別法,安定判別の応用(一次遅れ要素におけるP制御の安定範囲の導出)	行列式や不等式を応用し,フルビッツの安定判別法を 用いて,伝達関数の安定判別ができる.
		7週	定常偏差(一次遅れ要素におけるP制御の定常偏差),制御系の設計(一次遅れ要素におけるI制御器の安定範囲,一次遅れ要素におけるPID制御器の設計 設計仕様:閉ルーブの時定数Tm・定常偏差ゼロ)	一次遅れ要素に対して,PID制御系が設計できる.
		8週	安定性に関する総復習	伝達関数の概念を用いた制御システムの安定性に関する問題を解くことができる.
	4thQ	9週	後期中間試験の解答・解説,授業の感想・希望集計結 果の説明,成績集計結果	理解が不足している事柄を把握し,自ら補うことができる.
		10週	周波数応答とは,フーリエ変換と周波数応答,変位センサ(レーザ変位計)を例にした周波数応答の概念 ,入力u(t)=sin(wt)に対する伝達関数G(s)の出力 y(t)= G(jw) sin(wt+∠G(jw)),積分要素におけるボード線図の求め方	周波数応答の概念を説明できる.
		11週	周波数応答(ゲイン・位相線図, dB(デシベル)とは ,積分要素・一次遅れ要素のボード線図)	複素数の演算,オイラーの公式および弧度法を基礎として,三角比や三角関数,加法定理を応用し,一次遅れ要素におけるボード線図を描くことができる.
		12週	一次・二次遅れ要素におけるPID制御器の設計の補足 , ベクトル軌跡 (積分器)	積分要素におけるベクトル軌跡を描くことができる.
		13週	積分要素における積分特性,一次遅れ要素におけるボード線図(ゲイン・位相:高域における積分特性・ローパスフィルタ)およびベクトル軌跡	円の方程式を応用し,一次遅れ要素におけるベクトル 軌跡を描くことができる.
		14週	一次遅れ要素のボード線図とベクトル軌跡の関係, 一 巡伝達関数, ナイキストの安定判別法(ナイキスト線 図の描き方および判別手順)	ナイキストの安定判別法を用いた安定判別ができる.

		5週	ナイ:), : 余裕 様と	キストの安定 一巡伝達関数 (ゲイン余裕 する 2 次遅れ	判別法 (2/(2 ・位札 要素に	生における判別手順(復習 s-1) における安定判別,安定 目余裕),ゲイン余裕を設計仕 こおけるI制御器の設計	安定余裕を考慮したフィー きる.	ドバック制御系	らの設計がで
		<u></u> 三 / a	 	一	÷ 🗆 1				
	アカリキユ		リ子省	内容と到達				701年1 2011	1位447日
分類	I	分野		学習内容		内容の到達目標	到達レベル	授業週	
専門的能力				計測制御		制御の定義と種類を説明でき	4	前2	
						ードバック制御の概念と構成 的な関数のラプラス変換と逆。	4	前2,前6	
					ラブでき	プラス変換と逆ラプラス変換を でる。	4	前11,前12	
					伝達	関数を説明できる。		4	前14
		188 1 7	アノン田マ		ブロ	Iック線図を用いて制御系を表 ³	現できる。	4	後1
		(成/成/	系分野		制御	系の過渡特性について説明で	4	前13,前 14,前15,後 2	
	分野別の専 門工学				制御	系の定常特性について説明で	4	前13,前 14,前15,後 2	
	, , ,				制御	系の周波数特性について説明	4	後11,後 13,後14	
					安定	判別法を用いて制御系の安定	・不安定を判別できる。	4	後6,後15
			電気・電子 系分野	制御	伝達	関数を用いたシステムの入出	4	前14,前15	
					ブロ	ック線図を用いてシステムを	4	前6,後1	
		雷気			シス。	テムの過渡特性について、ス	4	前13,前14	
		素分野			シス	、テムの定常特性について、定2	4	前15,後7	
					シス。	テムの周波数特性について、	4	後10,後11	
					フィ	ードバックシステムの安定判別	4	後5,後6,後 14,後15	
評価割合									
定期試駁						課題レポート	その他 (授業態度)	合計	
総合評価割合			60			30	10	100	
1. 常微分方程式を離散近似し、PID制御における時間応答の数値解を求めることができる(PID制御のシミュレーションができる).			12			5	0	17	
2. 一次遅れ要素に対する PID制御の時間応答を導出 できる.			12			5	0	17	
3. 伝達関数における安定 判別ができる.			12			5 0		17	
4. 伝達関数における周波 数応答が導出でき, ボード 線図が描ける.			12			5 0		17	
5. 与えられた設計仕様を 満たすPID制御系の設計方 法が理解できる.			12			5	0	17	
6. 授業中に発言したり , 課題レポートに独自の工 夫を述べたりすることがで きる.			0			5	10	15	