沼洼	 ₹工業高等	 事門学校	開講年度	平成30年度 (2	2018年度)	授業科	 4目 化学 B			
科目基礎		, (31 3 3 1/2	1713413 172			122761	<u>. </u>			
科目番号	~ II JTK	2018-65	4		科目区分	一 般	一般 / 必修			
授業形態		授業			単位の種別と単位		逐单位: 2			
開設学科		物質工学科	—————————————————————————————————————		対象学年					
開設期		前期			週時間数	4				
教科書/教	树		(東京書籍), ニコトサイエンス化学図		「編化学」(東京書籍), ニューグローバル「化学基礎・化学」(東京書籍					
担当教員		小林 美学								
到達目標	 票									
(2) 基本的	りな無機物質	芯熱, 電気分解 質の種類と性質	解,化学平衡につい 質について理解し,	トマ基本的な理論を5 代表的な物質につい	理解し,定量的な打 いて名称や性質を	扱いができる 示すことがで	3(理論的な計算ができる)。 できる。			
ルーブリ	ノック		理想的な到達レー	~ II ~ D = -	標準的な到達レベルの目安		ナ列をしがせる日立			
							未到達レベルの目安			
評価項目1	1			応熱,電気分解 いて基本的な理論 変形や組み合わせ 定量的な扱いがで	気体、溶解,反原 , 化学平衡につい を理解し, 定量的。					
評価項目2	2		基本的な無機物質の種類と性質に ついて理解し、多くの物質につい て名称や性質を示すことができる 。			弋表的な物質	質につ 「ついて理解し,代表的な物質に			
学科の致	到達目標工	頁目との関	係							
【本校学	習・教育目	慓(本科のみ))] 2							
教育方法	去等									
概要		扱う。学々	生は実験なども通し 然科学的なものの見	、て、化学的に探究:	する能力と態度を「	身に付け、イ	i法で自然の事物・現象に関する問題を明 化学の基本的な概念や原理・法則の理解 内な概念や原理・法則を工学分野に適用			
授業の進む	め方・方法		験室で行なう。				質について扱う。講義は教室で,実験は			
注意点							の教育実施検査に使用することがありま 1教員へ連絡してください。			
授業計画	—									
			授業内容			週ごとの到	達目標			
前期		1週	衝と蒸気圧.沸騰)	、物質の状態(気体 (状態図、ボイルの	·	念水江田林、1/18日で記りことがてきる。 ハイルの広				
	1stQ	2週	状態方程式,気体の	(ボイル・シャル) D分子量) (混合気体,理想象	200法則,以降の	ボイル・シャルルの法則,気体の状態方程式,分圧の 法則を用いて,定められた条件から指定された物理量 を求めることができる。理想気体と実在気体の違いを 示すことができる。				
		3週	第5回:溶液の性質 第6回:溶液の性質	「(溶解のしくみ,ほ 「(溶液の濃度,気体	当体の冷解皮) ┃ ★の溶解度)	溶解度曲線を読むことができる。溶解度やヘンリーの 法則を用いて,与えられた条件から指定された物理量 を求めることができる。				
		4週	下,沸点上昇度・ 第8回:溶液の性質	(蒸気圧降下と沸点 経固点降下度と分子 ((浸透圧,浸透圧と	量) と分子量)	凝固点降下,沸点上昇,浸透圧に関して,与えられた 条件から指定された物理量を求めることができる。				
		5週	質)	[(コロイド粒子,] 質(コロイド溶液の		コロイド溶液の種類と性質について示すことができる。観察から, コロイド溶液の性質を考察することができる。				
				造(結晶の種類, 金 造(イオン結晶の構		代表的な固体の構造について示す事ができる。構造に ついて与えられた条件から,指定された物理量を示す ことができる。				
		7個	方程式)	と熱(反応熱と熱の化学反応と熱(いる			熱化学方程式を記述することができる。へスの法則を 用いて,反応熱を計算できる。			
		8週 .	エネルギー)	と熱(生成熱と反応 (電気分解, 電気分	,	結合エネルギーから反応熱を求めることができる。電気分解により生成する物質を示すことができる。ファラデーの法則から、生成物の量を求めることができる。反応の速さを式で表し、値を求めることができる。				
	2040	9週	の速さの表し方) 第19回 : 化学反応の	の速さ(速い反応と の速さ(反応速度と と触媒, 反応速度を	:濃度,反応速度	電気分解により生成する物質を示すことができる。 ファラデーの法則から, 生成物の量を求めることができる。 反応の速さを式で表し, 値を求めることができる。				
	2ndQ	10週	ギー)	の速さ(粒子の衝突 (可逆反応, 化学平	<i>'</i>	反応速度に変化を与える要因とその影響を示すことが できる。活性化エネルギーから反応機構を説明するこ とができる。				

	11返		第22回:化学平衡(平衡移動の原理,圧力変化と平衡 移動,温度変化と平衡移動,触媒と平衡の移動) 第23回:化学平衡(ルシャトリエの原理の工業への応 用),実験「反応速度と温度」					ができる。 Sことがで	観察から, 化 きる。外的要	定された物 学平衡の移 因から, 平
1		12週		料CPC/ しゅぎゅうルツェル (たっちしい) 短げること			挙げることができる	原理の工業への応用について,実例を きる。電離平衡を用いて,与えられた nた物理量を求めることができる。		
	13)		ガス	回:水溶液中 回:ハロゲン	グルチ十俣(俗辨千俣),小糸〇世 理量を求めることができる。 水割		バできる。 水素,希	られた条件から指定された物る。溶解度積に関する計算を ,希ガス,ハロゲンに関する 質を示すことができる。		
				回:酸素とその化合物,硫黄とその化合物(1) 酸素,硫黄,窒素に関する代回:硫黄とその化合物(2),窒素とその化合物 を示すことができる。			表的な物質の名称と性質			
			第30				する代表的な物質の名称と性			
	16週			771日・水木 C C V 10日7111(2), フコ米 C C V 10日初 貝でかりここが C さる。						
モデルコフ	プカリキ	ュラムの	学習	内容と到達	 [目標					
分類	1-	分野	<u>, </u>	学習内容					到達レベル	授業週
		, , , , ,			水の状態変化が説明できる。				3	前1
					ボイルの法則、シャルルの法則、ボイル-シャルルの法則を説明 でき、必要な計算ができる。			を説明	3	前2
	- + b = 1 1 1 1	化学(一		化学(一般)	気体の状態方程式を説明でき、気体の状態方程式を使った計算が できる。			た計算が	3	前2
基礎的能力	目然科学		一般)		電気分解反応を説明できる。				3	前2
					電気分解の利用として、例えば電解めっき、銅の精錬、金属のリサイクルへの適用など、実社会における技術の利用例を説明できる。			金属のリ説明でき	3	前8
					ファラデーの法則による計算ができる。			3	前8	
					電離平衡と活量について理解し、物質量に関する計算ができる。				1	前12
					溶解度・溶解度積について理解し必要な計算ができる。				3	前13
				分析化学	強酸、強塩基および弱酸、弱塩基についての各種平衡について説明できる。				3	前12
ı					緩衝溶液とpHの関係について説明できる。				3	前12
	ᄼᄪᇎᆔᇰᆕ	E //	41_11 <i>b</i> m		気体の法則を理解して、理想気体の方程式を説明できる。				3	前2
専門的能力	分野別の専 門工学	∮ 化学・ 系分野	生物 ;		混合気体の分圧の計算ができる。				3	前2
		1,1,3223		物理化学	凝固点降下と浸透圧より、溶質の分子量を計算できる。				1	前4
					相律の定義を理解して、純物質、混合物の自由度(温度、圧力、 組成)を計算し、平衡状態を説明できる。			1	前1	
					平衡の記述(質量作用の法則)を説明できる。			3	前10	
					諸条件の影響(ルシャトリエの法則)を説明できる。				3	前10
					電池反応と電気分解を理解し、実用例を説明できる。			1	前9	
評価割合										
試験					演習, 課題, 実験レポート, 積極 合計					
総合評価割合				1		30 100				
						30 100				
専門的能力						0 0				
分野横断的能	力		0			0	0			