豊田工業高等専門学校		開講年度	平成31年度 (2	019年度)	授業科目	コンクリート構造学 I B	
科目基礎情報							
科目番号	43227			科目区分	専門/選	択必修8	
授業形態	講義			単位の種別と単位数	複 履修単位	: 1	
開設学科	環境都市工学	科		対象学年	3		
開設期	後期			週時間数	2		
教科書/教材	「建設材料」	中嶋清実・角	田忍・菅原隆 著	(コロナ社)ISBN	l: 978433905	55085/適宜プリントを配布する	
担当教員	河野 伊知郎	·	·	·	·		
到達日標							

- (ア)コンクリートの弾性および塑性、応力ひずみ曲線、静弾性係数、動弾性係数、ポアソン比、クリープ等について理解する。(イ)コンクリートの体積変化、耐久性、耐久性指数、水密性等について理解する。(ウ)コンクリートの非破壊検査の試験方法について理解する。(ウ)コンクリート、寒中・暑中コンクリート、その他の各種コンクリートの性質などを理解する。(エ)AEコンクリート、寒中・暑中コンクリート、その他の各種コンクリートの性質などを理解する。(オ)許容応力度設計法の概要および仮定を理解する。(カ)任意断面における曲げ応力の一般式を理解する。(ナ)単鉄筋および腹鉄筋の応力の計算ができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	コンクリートの弾性および塑性、	コンクリートの弾性および塑性、	コンクリートの弾性および塑性、
	応力ひずみ曲線、静弾性係数、動	応力ひずみ曲線、静弾性係数、動	応力ひずみ曲線、静弾性係数、動
	弾性係数、ポアソン比、クリープ	弾性係数、ポアソン比、クリープ	弾性係数、ポアソン比、クリープ
	等について理解し,説明できる。	等について理解する。	等について理解できない。
評価項目2	コンクリートの体積変化、耐久性	コンクリートの体積変化、耐久性	コンクリートの体積変化、耐久性
	、耐久性指数、水密性等について	、耐久性指数、水密性等について	、耐久性指数、水密性等について
	理解し,説明できる。	理解する。	理解できない。
評価項目3	コンクリートの非破壊検査の試験	コンクリートの非破壊検査の試験	コンクリートの非破壊検査の試験
	方法について理解し,説明できる。	方法てについて理解する。	方法てについて理解できない。

学科の到達目標項目との関係

本校教育目標 ② 基礎学力

教育方法等

概要	コンクリート構造学とは鋼材で補強されたコンクリート構造物の設計方法を学ぶ学問である。コンクリート構造物を計画、設計、施工するに際し、はじめにコンクリートの特性を十分把握しておく必要がある。「コンクリート構造学IA」でフレッシュコンクリートの性質を学んだので、本講義では前半に硬化コンクリートの性質を学び、後半にコンクリート構造学における設計法を学ぶ。設計法には許容応力度設計法と限界状態設計法があるが、本講義では、許容応力度設計法の曲げを受けるはりの設計計算法などを学ぶ。
授業の進め方・方法	

注意点 関数電卓を毎時間持参すること。 選択必修の種別・旧カリ科目名

授業計画

		週	授業内容	週ごとの到達目標
		1週	硬化コンクリートの性質 1	硬化コンクリートの性質(応力 – ひずみ曲線、各種弾性係数等)を説明できる
		2週	硬化コンクリートの性質 2	硬化コンクリートの性質(ポアソン比、クリープ等)を説明できる
		3週	硬化コンクリートの性質3	硬化コンクリートの性質(乾燥収縮、自己収縮、温度 変化による体積変化等)を説明できる
3rd	3rdQ	4週	コンクリートの耐久性および各種劣化要因 1	コンクリートの耐久性および各種劣化要因(凍害、塩 化物イオン、アルカリシリカ反応等)について説明で きる
		5週	コンクリートの耐久性および各種劣化要因 2	コンクリートの耐久性および各種劣化要因(凍害、塩 化物イオン、アルカリシリカ反応等)について説明で きる
		6週	コンクリートの水密性、非破壊試験	コンクリートの水密性、非破壊試験の基礎を説明できる
後期		7週	各種コンクリートの特徴、用途1	各種コンクリートの特徴、用途について、説明できる
		8週	各種コンクリートの特徴、用途2	各種コンクリートの特徴、用途について、説明できる
		9週	コンクリート構造概要	コンクリート構造の種類、特徴について、説明できる
		10週	許容応力度設計法	許容応力度設計法について説明できる
		11週	コンクリートの力学的性質および鉄筋の力学的性質	コンクリートの力学的性質および鉄筋の力学的性質が 説明できる
4thO	4thQ	12週	許容応力度設計法による単鉄筋長方形断面	曲げモーメントを受けるはり部材を説明でき、計算で きる
		13週	許容応力度設計法による複鉄筋長方形断面	曲げモーメントを受けるはり部材を説明でき、計算で きる
		14週	断面設計の演習	断面設計ができる
		15週	後期の(総)まとめ	後期に学んだ内容を確認し、完全に理解する
		16週		

モデルコアカリキュラムの学習内容と到達目標

分類 一 分野 一 学習内容 学習内		学習内容	学習内容の到達目標	到達レベル	授業週	
市明的火土	分野別の専	7キ=ルズ 八甲マ	++40	各種コンクリートの特徴、用途について、説明できる。	4	後7,後8
専門的能力	門工学	建設系分野	材料	非破壊試験の基礎を説明できる。	4	後6

	碩 性	アイスタイプ (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)	^単 4	後1,後3			
	而中	対久性に関する各種劣化要因(例、 中性化)を説明できる。	4	後4,後5			
]ンクリート構造の種類、特徴に	4	後9			
	一流	1ンクリート構造の代表的な設計 5力度設計法について、説明でき	法である限界状態設計法、許 る。	^容 4	後10		
評価割合							
	定期試験	小テスト	課題	合計			
総合評価割合	50	30	20	100			
専門的能力 50		30	20	100			