	工業高等	専門学校	開講年度	令和03年度 (2	2021年度)	授業科目	応用物理基礎		
科目基礎	情報				•				
科目番号		43131			科目区分 専門/選技		択		
授業形態		講義			単位の種別と単位	立数 履修単位	: 1		
開設学科		環境都市工	学科		対象学年 3				
開設期		前期			週時間数	2			
教科書/教林	·才	高専テキス	トシリーズ 物理	[(下)熱・電磁気	・原子」 潮 秀植	樹 監修 (森北出版株式会社)			
担当教員		大森 有希子							
到達目標	<u> </u>								
(イ)電界か (ウ)状況に (エ)直流回 (オ)簡単な	ら電位を求 応じて, こ 路において 場合につい	えめることがで]ンデンサの電 [, オームの法]	きる。 気容量を求めるこ 則を適応し,電流	考えることができ とができる。 ・電圧・抵抗を求 その磁界中で電流	めることができる。	。 を調べることがで	: き る。		
ルーブリ	ック						1		
			理想的な到達レ		標準的な到達レベルの目安		未到達レベルの目安		
評価項目1			9 る心用問題を	電界,電位に関 解くことができる	クーロンの法則,電界,電位に する基礎問題を解くことができ 。		クーロンの法則,電界,電位に関する基礎問題を解くことができない。		
評価項目2			コンデンサーや 路に関する応用! できる。	電気抵抗を含む回 問題を解くことが	コンデンサーや電路に関する基礎問できる。	電気抵抗を含む叵 問題を解くことが			
評価項目3			磁界と電流・電荷 題を解くことが	筒に関する応用問 できる	磁界と電流・電荷 題を解くことがで		磁界と電流・電荷に関する基礎問 題を解くことができない。		
	冷口海で	ロレの門が		<u> </u>	虚で胖くしてかり	<u>て る。</u>	戍で肝へしこがじさない。		
子科の到 本校教育目		9目との関係	:						
		ナル							
教育方法	. ज	大謀差では	主に宣笙学坊!	パルの「電磁与学」	を学ぶ 重持や歴	荷の問に働くもち	・学バーフれを冊解するための電甲・		
概要		磁界などの し、これら 本講義の内	は、主に高等学校レベルの「電磁気学」を学ぶ。電荷や磁荷の間に働く力を学び、これを理解するための電界・ の概念を学習する。電流と電気回路に用いられる素子(コンデンサー・電気抵抗・半導体素子)の基本を学習 られるといるでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は						
	 方・方法	- CC C/ -B/		. (У(У О СП/О	U 10				
·////////////////////////////////////		本講義は,	高校レベルの力学	生(物理Ⅰ)の内容	を理解しており、	 また、ベクトル及	び微分・積分の概念を理解している		
	 -	との認識の	上で進める。						
		旧カリ科目	名						
授業の属	性・履修	を上の区分_			_				
□ アクテ-	ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対応	<u>v</u>	□ 実務経験のある教員による授業		
必履修									
授業計画	l								
			業内容 			週ごとの到達目標			
	1stQ	1週 体	電気力 : (a)摩 (d)静電誘導 の法則	擦電気 (b)帯電 (e)不導体の誘電な	公伍" (6) 万 一 1	摩擦電気・帯電・導体と不導体・静電誘導・不導体の 誘電分極・クーロンの法則を説明できる。			
		2週 体		擦電気 (b)帯電 (e)不導体の誘電な		摩擦電気・帯電・導体と不導体・静電誘導・不導体の 誘電分極 ・クーロンの法則の問題を解くことができる。			
		3週 電	界: (a)電界	(b)電気力線 (c)	ガウスの定理	電界・電気力線	・ガウスの定理を説明できる。		
		⁴ 週 (c)電界中の導体		(b)等電位面	電位と電位差・等電位面・電界中の導体を説明できる。			
		<u>ン间</u> (C	位と電位差: (a)電界中の導体 、ご、サー・ (` ,	ことができる。	等電位面・電界中の導体の問題を解く 		
		(C	ンテンリー: ()誘電体と電気容 ンデンサー: (量 (d)コンデンサ	(b)電気容量 ナーの接続 (b)電気容量	コンデンサー・電気容量・誘電体と電気容量・コンデンサーの接続を説明できる。 コンデンサー・電気容量・誘電体と電気容量・コンデ			
前期		/過 (c)誘電体と電気容 ンデンサー: (量 (d)コンデンサ a)コンデンサー	デーの接続 (b)電気容量	ンサーの接続を コンデンサー・	妾続を説明できる。 ナー・電気容量・誘電体と電気容量・コンデ		
-	2ndO	O油 (C)誘電体と電気容 圧と電流: (a)	量 (d)コンデンセ 電流 (b)オームの	げーの接続	電流・オームの	問題を解くことができる。 法則・抵抗の接続・ジュール熱・電力		
		直 10週 木	ッフの法則` (c)	・ル熱・電刀 池の起電力と内部排 ホイートストーン	低抗 (b)キルヒ ブリッジ (d)電	を説明できる。 電池の起電力と「 ートストーンブ	3明できる。 3の起電力と内部抵抗・キルヒホッフの法則・ホ- -ストーンブリッジ・電流計と電圧計を説明でき		
			計と電圧計		•	0			
	2nd∩	11週	ッフの法則`´(c)	池の起電力と内部担合のできます。	氐抗 (b)キルヒ ブリッジ (d)電	ートストーンブ	内部抵抗・キルヒホッフの法則・ホイ ノッジ・電流計と電圧計の問題を解く		
	2ndQ	11週	ッフの法則`´(c) 計と電圧計	池の起電力と内部排 ホイートストーン: 体 (b)ダイオート	ブリッジ゛(d)電	ートストーンブ ことができる。	内部抵抗・キルヒホッフの法則・ホイ リッジ・電流計と電圧計の問題を解く ード・トランジスタを説明できる。		
	2ndQ	11週 ホ流 12週 ギス 13週 電	ッフの法則 ^(c) 計と電圧計 導体: (a)半導 タ)ホイートストーン: 	ブリッジ (d)電 (c)トランジ (b)磁界と磁力線	ートストーンブ ことができる。 半導体・ダイオ・	Jッジ・電流計と電圧計の問題を解く 		

	:	15週	磁界と電磁力: (a)電流が磁界から受ける力 (b)磁 電流が磁界から受ける力・磁界と磁束密度・直線電流 界と磁束密度 (c)直線電流間に働く力 (d)ローレン 間に働く力・ローレンツカの問題を解くことができる ツカ						
	-	16週							
モデルコ	アカリキ	ュラムの)学習	内容と到達	自目標				
分類		分野		学習内容	学習内容の到達目標		到達レベル	授業週	
基礎的能力				電気	導体。	導体と不導体の違いについて、自由電子と関連させて説明できる。			前1,前2
					電場・電位について説明できる。			3	前3,前4,前 5,前6,前 7,前8
	自然科学		rī i		クー	クーロンの法則が説明できる。		3	前1,前2
		物理				クーロンの法則から、点電荷の間にはたらく静電気力を求めることができる。		3	前1,前2
					オー	オームの法則から、電圧、電流、抵抗に関する計算ができる。		3	前9,前 10,前11,前 12
					抵抗こと	抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める ことができる。			前9,前 10,前11,前 12
					ジュール熱や電力を求めることができる。			3	前9
評価割合									
		中間	引試験			定期試験	課題	合計	
総合評価割合 30						50	20	100	
専門的能力		30				50	20	100	