豊田工業高等専門学校		開講年度	平成29年度 (2	017年度)	授業科目	応用物理等	学Β	
科目基礎情報								
科目番号	53221			科目区分	専門/選	択		
授業形態	講義			単位の種別と単位数	效 履修単位	: 1		
開設学科	建築学科			対象学年	3			
開設期	後期			週時間数	2			
教科書/教材	「力学」 為近 和彦 著 (森北出版社)/「図解入門 よくわかる力学の基本と仕組み」 潮 秀樹 著 (秀和システム)							
担当教員	大森 有希子							
지수다표								

- (ア)微分を用いて、質点の速度・加速度を求めることができる。 (イ)微分を用いて、質点の運動方程式を立て、それについて解くことができる。 (ウ)状況に応じて、力学的エネルギ保存則、運動量保存則を適応できる。 (エ)角運動量と力のモーメントの関係を理解し、角運動量保存則を適応することができる。 (オ)対称性の良い剛体について、慣性モーメントを求めることができる。 (カ)剛体について、回転運動の運動方程式を立て、解くことができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安	
評価項目(ア)	微分を用いて,物体の運動に関す る応用問題を解くことができる。	微分を用いて,物体の運動に関する基礎問題を解くことができる。	微分を用いて,物体の運動に関する基礎問題を解くことができない。	
評価項目(イ)	カのモーメント,角運動量,角運動量保存則に関する応用問題を解くことができる。	カのモーメント,角運動量,角運動量保存則に関する基礎問題を解くことができる。	カのモーメント,角運動量,角運 動量保存則に関する基礎問題を解 くことができない。	
評価項目(ウ)	剛体の慣性モーメント, 回転の運動方程式を使った応用問題を解くことができる。	剛体の慣性モーメント,回転の運動方程式を使った基礎問題を解く ことができる。	剛体の慣性モーメント, 回転の運動方程式を使った基礎問題を解く ことができない。	

学科の到達目標項目との関係

教育方法等

概要	本講義では、大学基礎レベルの力学を学ぶ。1年生で習った高校レベルの力学が基礎となるが、微分・積分やベクトル 演算などの数学的テクニックを使うことで、より厳密な物理現象の数学的表現を学ぶ。前半では、質点の力学を扱うが 、微分方程式を用いて質点の運動を記述し、これを解くことで時間に対する物体の運動を明らかにする。また、後半で は、剛体の力学を学ぶ。前半で修得した並進運動に加え、力のモーメントや角運動量で記述される「回転の運動方程式」 を立て、時間に対する剛体の運動を調べる。
授業の進め方・方法	
注意点	本講義は、高校レベルのカ学(物理 I)の内容を理解しており、また、微分・積分についての知識があることを前提の

上で講義を行う。 選択必修の種別・旧カリ科目名

授業計画

以来可臣	以未可與							
		週	授業内容	週ごとの到達目標				
後期		1週	カ学の基礎 : ベクトル, 位置ベクト ルの表現	物体の位置をベクトルを使って表現できる。				
		2週	加速度運動 : 質点の位置・速度・加速度の関係と質点の運動	質点の位置・速度・加速度の関係と質点の運動を説明 できる。				
		3週	運動方程式 : 微分を用いた質点の運動方程式と具体例	微分を用いた質点の運動方程式を立てることができ , 具体例を説明することができる。				
	2540	4週	運動方程式 : 微分を用いた質点の運動方程式と具体例	微分を用いた質点の運動方程式を使って, 問題を解く ことができる。				
	3rdQ	5週	仕事とエネルギ : 仕事の概念, 仕事と力学的エネルギ, 力学的エネルギ保存則	仕事の概念,仕事と力学的エネルギ,力学的エネルギ 保存則を説明できる。				
		6週	仕事とエネルギ : 仕事の概念,仕事と力学的エネルギ,力学的エネルギ保存則	仕事の概念,仕事と力学的エネルギ,力学的エネルギ 保存則の問題を解くことができる。				
		7週	運動量 : 運動量と力積, 運動量 保存則, 反発係数	運動量と力積,運動量保存則,反発係数を説明できる。				
		8週	運動量 : 運動量と力積, 運動量 保存則, 反発係数	運動量と力積,運動量保存則,反発係数の問題を解く ことができる。				
	4thQ	9週	角運動量と力のモーメント : 角運動量と力のモーメントの関係, 角運動量保存則	角運動量と力のモーメントの関係, 角運動量保存則を 説明できる。				
		10週	角運動量と力のモーメント : 角運動量と力のモーメントの関係, 角運動量保存則	角運動量と力のモーメントの関係, 角運動量保存則を 説明できる。				
		11週	角運動量と力のモーメント : 角運動量と力のモーメントの関係, 角運動量保存則	角運動量と力のモーメントの関係, 角運動量保存則の 問題を解くことができる。				
		12週	剛体 : 剛体の定義, 慣性モー メント, 重心	剛体の定義, 慣性モーメント, 重心を説明できる。				
		13週	剛体 : 剛体の定義, 慣性モー メント, 重心	剛体の定義, 慣性モーメント, 重心の問題を解くことができる。				
		14週	剛体の運動 : 回転運動と並進運動, 回 転軸を持つ場合の運動記述	回転運動と並進運動,回転軸を持つ場合の運動につい て説明できる。				
		15週	剛体の運動 転軸を持つ場合の運動記述 : 回転運動と並進運動, 回	回転軸を持つ場合の運動について問題を解くことができる。				
		16週						
ナブルララとしょ。ニノの光羽も向し初き口煙								

モデルコアカリキュラムの学習内容と到達目標

分類 分野	到達レベル 授業週
---------	------------

評価割合						
	中間試験	定期試験	課題	合計		
総合評価割合	30	50	20	100		
専門的能力	30	50	20	100		