		専門学校	開講年度	令和03年度 (2021年度)		構造工学			
科目基礎		<u> </u>	<u> </u>	11311100 172 (2021 192)					
科目番号	LIDTK	94011			科目区分	専門 / j				
授業形態		講義			単位の種別と単位		ドリノ 選択 学修単位: 2			
開設学科		建設工学	 專攻A		対象学年	専2				
開設期		後期	.3.70.1		週時間数	2				
教科書/教	 材	「構造力学	 学」 後藤芳顯ら	(技報堂出版)]	-	-1813-0-C305	適宜プリントを配布する。			
担当教員	•	川西 直樹								
到達目標	<u> </u>									
(イ)一自由	3度系の振動 3度系の振動	カについて, ² カについて, ²	その振動解に関する その振動解に関する	る基本的な物理量 る物理量の求め方を	式を正しく立てるこ (固有周期,位相, 理解している。 ()の概要を理解し の基本的な解法を	振幅など)を具	体に求めることができる。			
ルーブリ										
			理想的な到達レベルの目安		標準的な到達レク	ベルの目安	未到達レベルの目安			
振動問題の基本的な解き方			い式を正確に立て 解くことができ		各振動問題に対い式を立てること		各振動問題に対する動的なつり合い式を立てることができない。			
一自由度系の振動			(固有周期,位相,振幅など)を 具体に求めることができる。		一自由度系の振動振動解に関する 識について理解	基本的な解法,タ	の 一自由度系の振動について、その 振動解に関する基本的な解法、知 識について理解していない。			
多自由度系の振動			多自由度系の振 振動解に関する 理解している。	動について, その 物理量の求め方を	多自由度系の振動 振動解に関する いて理解している	基本的な解決に1				
学科の到	達目標項	目との関	係							
JABEE d \(\(\)	育到達度目標 当該分野に 目標 ② 基礎	おいて必要と	野の実社会に必要で される専門的知識	で役立つ知識や技術とそれらを応用する	所を応用して問題を る能力	解決する能力を	修得する。			
教育方法	 装等									
ついて学 この科目(を行うも)			、本科で学んだ静的な荷重を受ける構造物の解析法に加え、さらに、動的な荷重を受ける構造物の解析法に関知識の修得が必要不可欠である。本講義では、構造物の振動による応答変位を算定するための基礎的な手法に対してとを主な目的とする。 は企業で鋼橋の設計を担当していた教員が、その経験を活かし、構造物の設計手法等について講義形式で授業のである。							
授業の進め	か方・方法	、次回講					けくいく形式のものである。このにめ 容を確実に理解したうえで、次の授業 			
注意点 選択 必修	か 番別・	_ 旧カリ科								
			<u> </u>							
		<u> </u>								
□ アクテ	・ィブラーニ	<u>ング</u>	□ ICT 利用		□ 遠隔授業対応	<i>,</i>	□ 実務経験のある教員による授業			
授業計画	1									
		1 1	授業内容			週ごとの到達目	• • • •			
後期		1週	d'Alembertの原理)(課題:自由振動	, 一自由度系の自 動の例題)	由振動(非減衰	d'Alembertの原)について理解	里, 一自由度系の自由振動(非減衰 ⁻ る。			
	3rdQ	2週	d'Alembertの原理)(課題:自由振動	, 一自由度系の自 動の例題)		d'Alembertの原)について練習	原理, 一自由度系の自由振動(非減衰 間題を通じて理解する。			
			減衰のある―自由原 動の例題)	度系の自由振動(i 	果題:減衰自由振	減衰のある一自由度系の自由振動の解法について理解する。				
		4週	減衰のある一自由原 動の例題)			の解法について	,て, 減衰のある―自由度系の自由振動 理解する。			
		3,00	強制外力を受ける ⁻ 外力)(課題:強制	制振動の例題)		ついて理解する。				
		6週	強制外力を受ける- 外力)(課題:強制	ー自由度系の振動 制振動の例題)	(調和外力,任意	振動の解法,特	て, 強制外力のある一自由度系の自由 で徴について理解する。			
		7週	二自由度系の振動(課題:二自由度系振動の例			二自由度系の振動問題の運動方程式のたて方について 理解する。				
		8週	二自由度系の振動 (課題:二自由度系振動の例題)			二自由度系の振動問題の運動方程式の解き方にについ て理解する。				
	4thQ	9週	二自由度系の振動	(課題:二自由度系	系振動の例題)	練習問題を通じて、二自由度系の振動問題の運動方式の解き方にについてより深く理解する。				
		10週	二自由度系の振動	(課題:二自由度系	系振動の例題)	練習問題を通じて,二自由度系の振動問題の運動方式の解き方にについてより深く理解する。				
		11/0		也自由度振動の例と	9)	多自由度系の運動方程式のたて方について理解する				
		12週		也自由度振動の例是	題)	モーダルアナリシスによる多自由度系の運動方程式解き方について理解する。				
		13週	モーダルアナリシス	スによる多自由度系 也自由度振動の例題	系の振動解析法	例題を通してモーダルアナリシスによる多自由度系の 運動方程式の解き方について理解する。				

		14週	棒の約曲げ扱	棒の縦振動,はりの曲げ振動(課題:具体的なはりの は 曲げ振動の例題)					棒の縦振動問題に対する運動方程式のたて方およびそ の解法について理解する。		
15週			棒の約曲げ扱	棒の縦振動, はりの曲げ振動 (課題:具体的なはりの曲げ振動の例題)				D (2	はりの曲げ振動問題に対する運動方程式のたて方およびその解法について理解する。		
		16週									
モデルコアカリキュラムの学習内容と到達目標											
分類		分野		学習内容の到達目標				到達レベル 授業週			
評価割合											
1		中	中間試験		定期試験		課題	1	合計		
総合評価割合		30	30		45		25		100		
専門的能力		30	30		45 2		25		100		