鳥羽	商船高等	 専門学校	開講年度 令和03年度 (2		授業科目	 センサ応用システム			
科目基礎		(3) 3 1/2			3238111				
科目番号	~ II J N	0144		科目区分	専門 / 【雷				
授業形態		講義		単位の種別と単位		学修単位: 2			
開設学科		制御情報		対象学年	5	_			
開設期		前期	X - 3 1	週時間数					
教科書/教	 オオ	1337 43	の基本と実用回路」、中沢信明、松井利						
担当教員	נאן	北原司		(田田初 八百)	<u> </u>				
	<u> </u>	14000 -3							
1. 最小二 2. 電磁認 3. 各種物	「乗法やフ・ 秀導やホール 物理量を検い	- リエ変換な ル効果、コリ 出する代表的	など、センサ出力信号と代表的な処理方 リオリカなどの物理現象を理解し、各種 なセンサの動作と応用例を説明できる	法ツールを活用でき センサの動作原理を	える。 ご説明できる。				
ルーブリ	リック		四担仇人到生! **! ** **			十型法L 公L 6日点			
			理想的な到達レベルの目安	標準的な到達レベ		未到達レベルの目安			
評価項目1			1. 最小二乗法やフーリエ変換な ど、センサ出力信号と代表的な処 理方法ツールを活用できる。	1. 最小二乗法や ど、センサ出力信 理方法の概略を説	号と代表的な処	1. 最小二乗法やフーリエ変換などの概略を説明できない。			
評価項目2	2		電磁誘導やホール効果、コリオリカなどの物理現象を理解し、各種センサの動作原理を説明できる。	電磁誘導やホール 力などの物理現象	効果、コリオリ を説明できる。	電磁誘導やホール効果、コリオリカなどの物理現象を説明できない。			
評価項目3	3		加速度センサ、角速度センサ、磁 気センサ、温度センサの動作と応 用例を説明できる。	加速度センサ、角 気センサ、温度セ を説明できる。	速度センサ、磁 ンサの動作原理	加速度センサ、角速度センサ、磁 気センサ、温度センサの動作原理 を説明できない。			
学科の至	達目標耳	頁目との関							
教育方法		<u> </u>	3 1/1						
概要		2. セン 3. 各租 4. 各租	カトロニクスにおけるセンサの果たす役が出力信号と代表的な処理方法の概略でンサの動作原理を構成する物理現象物理量を検出する代表的なセンサの動	を説明できる。 を説明できる。					
授業の進め	か方・方法	・取り扱	i法は講義を中心とする。 い対象によって、レポート課題を課す						
注意点 哲学の原	。 配件,房框	・ロ ^{吊生} ・センサ 多上の区分	活で触れる電子機器の構造や動作に注 対術とその応用技術は日進月歩である 、	息を払い、センザに。自ら能動的に情報	-興味を持ってと。 最を得ることに努め	めること。			
	<u> 51エ・//安川</u> -ィブラーニ		」 ☑ ICT 利用	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□					
	1// _		图 101 利用			□ 大切性状ののも教育にある技術			
授業計画	<u> </u>	週	授業内容	Ŋ					
			・イントロダクション		週ごとの到達目標				
	1stQ	1週	・イントロタクション ・センサの概略		・センサの基本的な機能や役割を説明できる。				
		2週	センサ信号の処理過程とノイズ対策		・センサが出力する信号の特徴を説明できる。 ・センサ信号の処理過程の概略を説明できる。 ・基本的な雑音の種類とその対策を説明できる。				
		3週	センサ信号の A D変換		・標本化と量子化を説明できる。 ・A D変換で生じる誤差を説明できる。				
		4週	統計的データ処理と最小二乗法		・誤差の統計的性質と精度の概略を説明できる。 ・最小二乗法の原理と効果を説明できる、				
前期		5週	フーリエ変換による周波数解析		・信号波形と周波数成分の関係を説明できる。 ・周波数解析の基本原理を説明できる。				
		6週	センサの特性評価	*	・センサの特性評価を行う際に必要な項目とその意味を説明できる。				
		7週	実際のセンサ信号を用いた処理例		・実際のセンサ出力の信号処置過程における信号形式 や処理方法をイメージできる。 				
		8週	前期中間試験						
	2ndQ	9週	・カとカセンサ ・圧力と圧力センサ		・ストレインゲー: ^{说明できる。}	E電素子型と静電容量型のカセンサの構造と動作原			
		10週	・加速度と加速度センサ		・加速度とその測定原理を説明できる。 ・各種加速度センサの動作を説明できる。 ・MEMS加速度センサについて知っている				
		11週	・角度,角速度とセンサ		・ロータリーエンコーダの動作を説明できる。 ・コリオリカを説明できる。 ・振動ジャイロの構造と動作を説明できる。				
		12週	・光センサ	 	・CdS、フォトダイオード、フォトトランジスタの動作を説明できる。 ・代表的な光検出回路の動作を説明できる。				
		13週	・磁気と磁気センサ		・電磁誘導, ローレンツカについて説明できる ・渦電流式近接センサの構造と動作を説明できる。 ・ホール素子と磁気抵抗素子の動作原理を説明できる。				

	1	4週	・温原	度と温度セン	/ サ		・熱電対, : ・サーミス る	測温抵抗体の動作 タ,IC化温度セン	■原理を説明で シサの動作原理	ごきる 関を説明で
	1	.5週	前期期	期末試験						
	1	.6週	セン	サエ学の総ま						
モデルコ	プカリキ・	ュラムの		内容と到			•			
<u>こり,レニッ</u> 分類	/3 / 1 -	分野	<i>,</i> , , ,	学習内容	学習内容の到達目]標			到達レベル	授業调
73705	W //II		, 6, ,6	オームの法則から、電圧、電流、抵抗に関する計算ができる。			3	1242		
基礎的能力	自然科学	物理		電気	抵抗を直列接続、				3	
					ことができる。			3		
				電気回路	電荷と電流、電圧	を説明できる	•		3	
					オームの法則を説明し、電流・電圧・抵抗の計算ができる。		3			
					合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができ			3		
					る。 ブリッジ回路を計算し、平衡条件を求められる。			3		
					フラッシ回路を計算し、平衡栄件を求められる。 正弦波交流の特徴を説明し、周波数や位相などを計算できる。			3		
					R、L、C素子にお				2	
					瞬時値を用いて、			上武功(さる。	3	
					フェーザ表示を用			 3	3	
					インピーダンスと				2	
					キルヒホッフの法				3	
					合成インピーダン					
					計算ができる。	· / () / L · / / /	いいっつ・コンピノコ・佐/田V		3	
					直列共振回路と立	が列共振回路の	計算ができる。		3	
					相互誘導を説明し	/、相互誘導回	路の計算ができる	5.	2	
					理想変成器を説明	できる。 			2	
専門的能力					重ねの理を用いて	、回路の計算	ができる。		3	
					網目電流法を用し	て回路の計算	ができる。		3	
					節点電位法を用し	へて回路の計算	ができる。		3	
					テブナンの定理を	回路の計算に	用いることができ	きる 。	3	
				電磁気	静電容量を説明できる。	き、平行平板	コンデンサ等の静	静電容量を計算で	3	
	分野別の専 門工学	軍 電気	• 電子		コンデンサの直列接続、並列接続を説明し、その合成静電容量を 計算できる。			3		
	 I]工 工	系分野	:J′		磁性体と磁化及び磁束密度を説明できる。			2		
					磁界中の電流に作	 ■用する力を説	 明できる。		3	
					ローレンツカを訪	 :朗できる。			3	
					磁気エネルギーを	説明できる。			2	
					電磁誘導を説明でき、誘導起電力を計算できる。			3		
					自己誘導と相互認	5導を説明でき	<u></u>		3	
					ダイオードの特徴	女を説明できる	•		2	
				電子回路電子工学	バイポーラトラン	ジスタの特徴	と等価回路を説明	できる。	2	
					演算増幅器の特性を説明できる。			2		
					真性半導体と不純物半導体を説明できる。			1		
					半導体のエネルギーバンド図を説明できる。			1		
					pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の電流一電圧特性を説明できる。			1		
				計測	計測方法の分類(4	計測方法の分類(偏位法/零位法、直接測定/間接測定、アナログ計測/ディジタル計測)を説明できる。			4	
					精度と誤差を理解し、有効数字・誤差の伝搬を考慮した計測値の 処理が行える。			3		
					SI単位系における基本単位と組立単位について説明できる。			3		
					A/D変換を用いたディジタル計器の原理について説明できる。			3		
					電圧降下法による抵抗測定の原理を説明できる。			2		
					ブリッジ回路を用いたインピーダンスの測定原理を説明できる。			2		
				制御	システムの過渡特性について、ステップ応答を用いて説明できる。			3		
評価割合		1		1						1
	試験		発	表	相互評価	態度	ポートファ	ナリオ その他	合計	†
総合評価割合 60		0			0	0	40	0	100)
基礎的能力 0		0			0	0	0	0	0	
専門的能力 60		0			0	0	40	0	100)
分野横断的能	治力 0		0		0	lo	0	lo	0	