鈴鹿工業高等専	 ∮門学校	開講年度	平成30年度 (2	2018年度)	授業科目				
科目基礎情報									
科目番号	0071			科目区分	専門 / 必修	<u> </u>			
授業形態	授業			単位の種別と単位数	履修単位:	2			
開設学科	電気電子			対象学年	5				
開設期	通年			週時間数	2				
教科書/教材	教科書:藤,石橋	「送配電」 前川, 共著(森北出版),	荒井共著(東京電祭 演習として「精解》	気大学出版局)参考書 寅習電力工学Ⅰ,Ⅱ」	:解説として 鬼頭 幸生著	「送配電工学(Ι), (Ⅱ)」 武 ぎ(廣川書店)など.			
担当教員	橋本良介								
到達目標									
発電所から電力需要場所までの電力の流れに沿って,発電設備,送電設備などの概要をつかみ,電力事業の特性を十分理解すると共に,電力円線図も含めた,配電特性や送電特性などの基本的な計算ができる.									
ルーブリック									
		理想的な到達レイ	ベルの目安	標準的な到達レベル	の目安	未到達レベルの目安			
評価項目1			需要場所までの電 できて設計に応用	発電所から電力需要 力の流れが説明でき	場所までの電 る.	発電所から電力需要場所までの電 力の流れが説明できない.			
評価項目2		電力事業に関する計に応用できる.	る計算ができて設	電力事業に関する基できる.	本的な計算が	電力事業に関する基本的な計算ができない。			
評価項目3		配電特性や送電物できて設計に応用	寺性などの計算が 用できる.	配電特性や送電特性な計算ができる.	などの基本的	配電特性や送電特性などの基本的な計算ができない.			
学科の到達目標項	目との関	係							
教育方法等									
概要	最近の電力需要の驚異的発展は世界的な現象であって、これに見合う大電力を輸送するには、高度の技術水準が要求される. さらに、系統の構成や運用面においても、システム的な開発が望まれる. 授業では、このような電力事業の特性を十分理解すると共に、配電特性や送電特性などの基本的な計算ができることを目的とする.								
授業の進め方・方法	・すべての内容は、学習・教育到達目標(B) 〈専門〉とJABEE基準 1 (2)(d)(1)に対応する. ・授業は一部演習を含む講義形式で行う. 講義中は集中して聴講する. ・「授業計画」における各週の「到達目標」はこの授業で習得する「知識・能力」に相当するものとする.								
 (到達目標の評価方法と基準>「授業計画」における各週の「到達目標」の確認を2回の中間試験、2回の定期試験で出題し、必要に応じてレポートを課して、目標の達成度を評価する。達成度評価における各「到達目標」の重みは概ね均等とする。評価結果が100点法で60点以上の場合に目標の達成とする。合計点の60%の得点で、目標の達成を確認できるレベルの試験を課す。 (学業成績の評価方法および評価基準>前期中間、前期末、後期中間、学年末の4回の試験の平均点で評価する。レポート課題を課した場合は、学業成績の10%を上限として評価に組み入れることがある。尚、前期中間、前期末、後期中間の試験について60点を達成できない場合において、必要に応じて、それを補う為の再試験を行う場合がある。このとき、再試験の成績が該当する試験の成績を上回った場合には、60点を上限としてそれぞれの試験の成績を再試験の成績で置き換えるものとする。 (単位修得要件>学業成績で60点以上を取得すること。 (あらかじめ要求される基礎知識の範囲>この授業は電気機器の学習が基礎となる教科である。電力システムにおいては、、線路の電圧降下や電力損失の計算、電気的特性の導出などの必要があるため、交流回路について十分理解しておくことが必要である。また、変圧器や発電機など電力機器についてもよく理解しておくことが必要である。 (本行とう理解を深めるため、必要に応じて演習課題を与える。 (補考>本教科は後に学習するエネルギー輸送論の基礎となる教科である。 									
授業計画			. —						
	E .	哲学内容		\m	ブレの到法日堙				

汉未可巴	1	1		T					
		週	授業内容	週ごとの到達目標					
	1stQ	1週	電力システムの概要	1. 発電所から電力需要場所までの電力の流れに沿って,電力システムの構成およびその構成要素について説明できる.					
		2週	配電線路:給電線,幹線,分岐線	2. 配電線路の構成およびその方式について説明ができる.					
		3週	配電線路:電気方式	3. 変圧器の結線方法に基づいた,配電線路の電気方式について説明できる.					
		4週	電力需要の推移と予測	4. 電力需要の推移と予測について説明できる.					
前期		5週	配電線路の計画:電力需要の想定と配電線路の建設計 画	5. 配電線の設備容量, 需要率, 不等率, 負荷率について計算できる.					
		6週	配電線路の計画:配電用変圧器の銅損,鉄損および全 日効率	6. 変圧器の銅損と鉄損について計算でき,配電用変圧器の全日効率が計算できる.					
		7週	配電線路の計画:配電線のこう長および配電面積,配電用変圧器の位置および容量選定	7. 配電線路の長さおよび配電面積について説明でき、配電用変圧器の位置および容量を選定することができる.					
		8週	前期中間試験	8. これまでに学習した内容を説明し,諸量を求めることができる.					
	2ndQ	9週	交流配電線路の電圧降下:配電線路のベクトル図	9. 電力損失,電圧降下,インピーダンス降下,電力 損失の計算及び銅量計算ができる.					
		10週	配電線路の銅量経済:単相2線式,単相3線式,三相3線式,三相4線式	10. 配電線路の銅量計算ができ,電力システムの経済的運用について説明できる.					
		11週	配電線路の電力損失	11. 配電線路の電力損失,電圧降下,インピーダンス降下および電力損失ができる.					
		12週	配電線路の力率改善:進相コンデンサ,低圧,高圧によるコンデンサ容量の表記方法の違い	12. 力率改善の必要性と方法について説明でき,進相コンデンサの容量計算及び力率改善に関する計算ができる.					
		13週	単相3線式とバランサ	13. 単相3線式についてバランサの必要性と原理を理解し、電流計算ができる.					

14週 低圧バンキング方式									Τ	/rr : " · · · ·	- - 1\(\cdot\)		400-		
16週 1週 線路定数:抵抗、インダクタンス、静電容量 16. 電線路の抵抗、インダクタンス、静電容量力 16. 電線路の抵抗、インダクタンス、静電容量力 16. 電線路の抵抗、インダクタンス、静電容量力 17. 各無線路定数がよび複導体線路の線路定数 17. 各無線路で取れよび複導体線路の線路定数にして説明できる。									14. 低圧バンキング方式について説明でき、これまでの学習に基づいて電力品質の維持に必要な手段について説明できる。						
1週 線路定数:抵抗、インダクタンス、静電容量 16. 電線路の抵抗、インダクタンス、静電容量 15. 電線路の抵抗、インダクタンス、静電容量 17. 名標線路定数および複導体線路の線路定数			15	週 酉	2電線路の保護	支置			配電線路の	保護装置に	ついて訪	明で	きる		
2回 2回 2回 2回 2回 2回 2回 2回			16	週											
3元dQ 1回路, n回路の略算の略算			1週	题	。路定数:抵抗,	インダ	インダクタンス,静電容量			16. 電線路の抵抗, インダクタンス, 静電容量が計算できる.					
3rdQ 電工降下とインピーダンス降下:電圧変動率、電圧降			2逓	题	泉路定数:複導係	本線路の	線路定数			17. 各種線路定数および複導体線路の線路定数について説明できる.					
下率 圧変動率、電圧降下率について計算できる。 12			3週	<u>I</u> T	- 回路, ⊓回路 <i>0</i>	略算の略算			18. , 各級	18. 送電線路をT形回路, n形回路で表すことができ , 各線路定数を用いて電気的特性が計算できる.					
5週 %インピーダンスと単位法: 基準値, ベース値, PU値		- 1-	4週			ピーダン	ス降下:電圧	変動率,電圧降		19. 送電線路の電圧降下, インピーダンス降下, 電圧変動率, 電圧降下率について計算できる.					
後期		siuQ	5週	9/	%インピーダンスと単位法:基準値,ベース値, PU値					%インピー? 算ができる.	ダンスおよ	び単位法	の考	え方を理解	
後期			6週	2 2	変圧器バンクの-	インピー				いて変圧器	器バンクのインピーダンス				
後期 日本			7遁	1	インピーダンスの	の加え算			2 2. ーダン	22. 電力設備として,変圧器を含む全系統のインピーダンスが計算できる.					
10週 交流電力の表し方,電力円線図の描き方			8週	後	後期中間試験					23. これまでに学習した内容を説明し,諸量を求めることができる.					
### ### ### ### #####################			9週		路状態と一般回路定数			24. 算でき	24. 送電線路について回路状態と一般回路定数が計算できる.						
## 20 12週 電力円線図と調相容量			10	週	ぶ電力の表し方、電力円線図の描き方			, 電力	,						
4thQ 12년 電力 J MAC に			113	週電	電力円線図の計算	円線図の計算			<u>電力,</u>	_ , ,					
13週 同知調相機・外域电池・外域电池・外域电池・大域电池・大域电池・大域电池・大域电池・大域电池・大域电池・大域电池・大		4thQ	12	週 電	電力円線図と調4	円線図と調相容量			27. 電力,	電力,相差角,調相容量などが計算できる.					
15週 直流送電 15週 直流送電 3 0 . 直流送電の特徴を理解し, 交流送電との違し 15週 直流送電 3 0 . 直流送電の特徴を理解し, 交流送電との違し 説明できる. 16週 三ボルコアカリキュラムの学習内容と到達目標 学習内容の到達目標 一次が 学習内容の到達目標 一次が 一次である。 本のでは、では、では、では、では、では、では、では、では、では、では、では、では、で			13	週 同	同期調相機:界G	明調相機:界磁電流,V曲線,電機子反作用			反作用						
15週 16週 説明できる. 説明できる. 説明できる. 記明できる. 記明できる. 記明できる. 日本			14	週電	カ用コンデン!	・サと分路リアクトル			29. の概要	の概要を理解し,説明できる.					
モデルコアカリキュラムの学習内容と到達目標 分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週 電力システムの構成およびその構成要素について説明できる。 4 交流および直流送配電方式について、それぞれの特徴を説明できる。 6 電力品質の定義およびその維持に必要な手段について知っている 4			15	週 直	宣流送電					30. 直流送電の特徴を理解し、交流送電との違いが説明できる.					
分類 学習内容 学習内容の到達目標 到達レベル 授業週 専門的能力 電気・電子 系分野 電力 電力 電力 電力 電力 電力 電力 電力 単型内容の到達目標 電力システムの構成およびその構成要素について説明できる。 る。 電力品質の定義および直流送配電方式について、それぞれの特徴を説明できる。 電力品質の定義およびその維持に必要な手段について知っている。 4 4 本 単力品質の定義およびその維持に必要な手段について知っている。 4 本															
専門的能力 分野別の専 電気・電子 系分野 電力 電力 記貨の定義およびその権力を受流されて説明できる。 4 交流および直流送配電方式について、それぞれの特徴を説明でき 4 電力品質の定義およびその維持に必要な手段について知っている 4	モデルコ	アカリ	ノキュ	ラムの学	習内容と到	達目標									
専門的能力	分類	分野 学習内容 学習内容の到達目標													
専門的能力 分野別の専門工学 電気・電子系分野 電力 電力 電力 電力 電力 電力品質の定義およびその維持に必要な手段について知っている 4	事 則的能力						電力システムの構成およびその構成要素について説明できる。								
		分野	別の専		i子 _{雷力}						説明でき	4			
電力システムの経済的運用について説明できる。 4	רלים אני היו ניבר ו	門工学		糸分野	电//	電力。	電力品質の定義およびその維持に必要し、			要な手段について知っている 4					
			電力システムの経済的運用について説明できる。 4												
評価割合	評価割合														
試験 課題 相互評価 態度 発表 その他 合計	試験			課題		三評価 一	態度	発表		その他	合		計		
総合評価割合 100 0 0 0 0 100	総合評価割合		100		+-	0		0			0	100			
配点 100 0 0 0 0 100	配点		100		0	0		0			0 100				