	専門学校	開講年度 平成29年度 (2	(017年度)	授	業科目	 電力システム工学		
科目基礎情報	131 3 3 121	133513 32 1336-3 132	, , , ,		2131 1 1	<u> </u>		
科目番号	0101		科目区分		専門 / 必修	>		
受業形態	授業		単位の種別と単位数					
開設学科	電気電子	工学科	対象学年	5				
開設期	通年		週時間数	2				
教科書/教材	藤,石橋	教科書:「送配電」 前川,荒井共著(東京電気大学出版局)参考書:解説として「送配電工学(I),(II)」 武 藤,石橋共著(森北出版),演習として「精解演習電力工学I,II」 鬼頭 幸生著(廣川書店)など.						
担当教員	橋本 良介	1						
到達目標								
発電所から電力需要場 線図も含めた, 配電特	易所までの電 寺性や送電特	力の流れに沿って,発電設備,送電設性 性などの基本的な計算ができる.	備などの概要をつか。 	み, โ	電力事業の	特性を十分理解すると共に,電力円 		
ルーブリック			1			T		
		理想的な到達レベルの目安	標準的な到達レベルの目安]安	未到達レベルの目安		
評価項目1		発電所から電力需要場所までの電力の流れが説明できて設計に応用できる.	発電所から電力需要場所までの電 力の流れが説明できる.		がまでの電	発電所から電力需要場所までの電力の流れが説明できない.		
評価項目2		電力事業に関する計算ができて設計に応用できる.	電力事業に関する基本的な計算ができる.		りな計算が	電力事業に関する基本的な計算ができない.		
評価項目3		配電特性や送電特性などの計算が 配電特性や送 できて設計に応用できる.		特性などの基本的 5.		配電特性や送電特性などの基本的な計算ができない.		
学科の到達目標項	目との関	係						
教育方法等								
概要	最近の電力需要の驚異的発展は世界的な現象であって、これに見合う大電力を輸送するには、高度の技術水準れる、さらに、系統の構成や運用面においても、システム的な開発が望まれる、授業では、このような電力事を十分理解すると共に、配電特性や送電特性などの基本的な計算ができることを目的とする.				するには,高度の技術水準が要求さ 業では,このような電力事業の特性 内とする.			
授業の進め方・方法		の内容は、デ語・教育到達目標(B) < 一部演習を含む講義形式で行う、講義に 計画」における各週の「到達目標」は						
注意点	く題等きくト間き績くく、とく到しとる学課の、で単あ線がレ産、すレ業題試再置位ら路必ポープを表示している。	標の評価方法と基準>「授業計画」にま 要に応じてレポートを課して,目標の注 . 評価結果が100点法で60点以上の場 ルの試験を課す。 債の評価方法および評価基準>前期中間 譲した場合は,学業成績の10%を上間 について60点を達成できない場合にお 験の成績が該当する試験の成績を上回 換えるものとする。 得要件>学業成績で60点以上を取得す じめ要求される基礎知識の範囲>この哲 である。また,変圧器や発電機など電。 トなど>理解を深めるため,必要に応じ 本教科は後に学習するエネルギー輸送論	はる各週の「到達目達成度を評価する」。 最合に目標の達成とでは、前期末、後期中間では、 では、前期末、後期中間では、では、では、では、では、では、では、では、では、では、では、では、では、で	目達す 引入,点 習がくる 標成る うれそを があ理	の確認を2を2を2を2を2を2を2を2を2を2を2を2を2を2を2を2を2を2を2	回の中間試験,2回の定期試験で出する各「到達目標」の重みは概ね均0%の得点で,目標の達成を確認で同の試験の平均点で評価する.レポー3.尚、前期中間,前期末,後期中の再試験を行う場合がある.このとそれぞれの試験の成績を再試験の成な料である。電力システムにおいては流回路について十分理解しておくこ		
授業計画								
	週	授業内容			の到達目標			
	1週	電気エネルギーの特徴:電気エネルギ	-ORNICAN T	1. 発電所から電力需要場所までの電力の流れして, 発電設備, 送電設備などの概要を説明できる				
	2週	エネルギー消費の推移		2. エネルギー消費の推移について説明できる.				
	3週	電力需要の推移と予測		3. 電力需要の推移と予測について説明でき				
	4週	送電系統の動向		4. 送電系統の動向について説明できる.				
1stQ	5週	最近の電力情勢		5. 最近の電力情勢について,その概要を理解し 明ができる.				
1	6週	配電方式:給電線,幹線,配電線路の	東与士士 6	-	重線吸の方	式について説明ができる.		

		週	授業内容	週ごとの到達目標
前期		1週	電気エネルギーの特徴:電気エネルギーの長所と短所	1. 発電所から電力需要場所までの電力の流れに沿って,発電設備,送電設備などの概要を説明できる.
		2週	エネルギー消費の推移	2. エネルギー消費の推移について説明できる.
		3週	電力需要の推移と予測	3. 電力需要の推移と予測について説明できる.
		4週	送電系統の動向	4. 送電系統の動向について説明できる.
	1stQ	5週	最近の電力情勢	5. 最近の電力情勢について, その概要を理解して説明ができる.
		6週	配電方式:給電線,幹線,配電線路の電気方式	6. 配電線路の方式について説明ができる.
		7週	配電線路の計画:電力需要の想定と配電線路の建設計画	7. 配電線の設備容量,需要率,不等率,負荷率について計算できる.
		8週	前期中間試験	8. これまでに学習した内容を説明し,諸量を求めることができる.
		9週	交流配電線路の電圧降下:配電線路のベクトル図	9. 電力損失,電圧降下,インピーダンス降下,電力 損失の計算及び銅量計算ができる.
		10週	配電線路の銅量経済:単相2線式,単相3線式,三相3線式,三相3線式,三相4線式	10.電力損失,電圧降下,インピーダンス降下,電力損失の計算及び銅量計算ができる
		11週	配電線路の電力損失	11. 電力損失,電圧降下,インピーダンス降下,電力損失の計算及び銅量計算ができる.
	2ndQ	12週	配電線路の力率改善:進相コンデンサ,コンデンサのスターデルタ結線	12. 力率改善の必要性と方法について理解で, 進相コンデンサの容量計算及び力率改善に関する計算ができる.
		13週	単相3線式とバランサ	13. 単相3線式についてバランサの必要性と原理を理解し、電流計算ができる.
		14週	低圧バンキング方式	14. 低圧バンキング方式について説明できる.
		15週	配電線路の保護装置	15. 配電線路の保護装置について説明できる.
		16週		
後期	3rdQ	1週	線路定数:抵抗,インダクタンス,静電容量	16. 電線路の抵抗, インダクタンス, 静電容量が計算できる.

1											
1回路の略算			2週	複導体線路の線路定数			17. 送電線路をT形回路, ⊓形回路で表すことができ , 4端子定数を用いた計算ができる.				
1回店の旧算			3週	T回路の略算			18. 送電線路をT形回路, n形回路で表すことができ , 4端子定数を用いた計算ができる.				
下字 大学 大学 大学 大学 大学 大学 大学 大			4週	п回路の略算			19. 送電線路をT形回路、n形回路で表すことができ , 4端子定数を用いた計算ができる.				
13週			5週				20. ダイオードおよびサイリスタの構造と動作原理を理解し、その種類を含めて説明できる.				
接用中間試験			6週	%インピーダンスと単位法:基準値,ベース値, PU値			2 1. %インピーダンスおよび単位法の考え方を理解 し, 計算できる.				
10週 回路状態と一般回路定数 24. 送電線路について回路状態と一般回路定数が計算できる。 25. 交流電力の表し方:電力ベクトルの計算,無効電力,有効電力などが計算できる。 25. 交流電力の表し方について,電力ベクトルの計算,無効電力,有効電力などが計算できる。 26. 電力円線図が作図でき、わた用いて送電電力,受電電力,損失電力,相差角,調相容量などが計算できる。 12週 電力円線図の計算 27. 電力円線図が作図でき、それを用いて送電電力,受電電力,損失電力,相差角,調相容量などが計算できる。 13週 電力円線図の計算 28. 電力円線図が作図でき、それを用いて送電電力,受電電力,損失電力,相差角,調相容量などが計算できる。 13週 電力円線図と調相容量 28. 電力円線図が作図でき、それを用いて送電電力,受電電力,損失電力,相差角,調相容量などが計算できる。 14週 同期調相機:界磁電流、V曲線、電機子反作用 29. 同期調相機について界磁電流、V曲線、電機子反作用を理解し、説明できる。 15週 電力用コンデンサと分路リアクトル 30. 電力用コンデンサと分路リアクトルついて、その概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルついて、その概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルの概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルの概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルの概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルついて、その概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルのいて、発達過 30. 電力用コンデンサと分路リアクトルのいて、発達過 30. 電力用コンデンサと分路リアクトルのいて、その概要を理解し、説明できる。 30. 電力用コンデンサと分路リアクトルのいて、発音を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を			7週	変圧器バンクのインピーダンス							
10週 一切の表し方:電力ベクトルの計算,無効電力 25. 交流電力の表し方について,電力ベクトルの計算,無効電力 26. 電力円線図が作図できっ、それを用いて送電電力 26. 電力円線図が作図できっ、それを用いて送電電力 できる。 26. 電力円線図が作図できっ、それを用いて送電電力 できる。 27. 電力円線図が作図できっ、それを用いて送電電力 できる。 27. 電力円線図が作図できっ、それを用いて送電電力 できる。 27. 電力円線図が作図できっ、それを用いて送電電力 できる。 28. 電力円線図が作図できっ、それを用いて送電電力 できる。 28. 電力円線図が作図できっ、それを用いて送電電力 できる。 28. 電力円線図が作図できっ、それを用いて送電電力 できる。 28. 電力円線図が作図できっ、それを用いて送電電力 できる。 29. 同期調相機について界磁電流 V曲線 できる。 13週 電力円線図と調相容量 29. 同期調相機について界磁電流 V曲線 電機子 できる。 29. 同期調相機について界磁電流 V曲線 電機子 反作用を理解し 説明できる。 15週 電力用コンデンサと分路リアクトル 30. 電カ用コンデンサと分路リアクトルついて、そ 16週 分野 学習内容 学習内容の到達目標 到達レベル 授業週 対野 対野 学習内容の到達目標 到達レベル 授業週 評価割合 試験 課題 相互評価 態度 発表 その他 合計 200			8週	後期中間試験			2 3. これまでに学習した内容を説明し,諸量を求めることができる.				
### ### ### ### #####################			9週	回路状態と一般回路定数			24. 送電線路について回路状態と一般回路定数が計算できる.				
4thQ 11週 電力円線図の表し方:送電電力,受電電力,相差角			10週				25. 交流電力の表し方について,電力ベクトルの計算,無効電力,有効電力などが計算できる.				
13週 電力円線図と調相容量			11週	電力円線図の表し方:送電電力,受電電力,相差角			, 受電電力, 損失電力, 相差角, 調相容量などが計算				
13週 電力円線図と調相容量		4thQ	12週	電力円線図の計算			27. 電力円線図が作図でき,それを用いて送電電力 ,受電電力,損失電力,相差角,調相容量などが計算 できる.				
14回 回知詞相様: 予呶电池, V曲線, 电機子及1F用 反作用を理解し, 説明できる. 15週 電力用コンデンサと分路リアクトル 3 0. 電力用コンデンサと分路リアクトルついて, その概要を理解し, 説明できる. 16週 モデルコアカリキュラムの学習内容と到達目標 分野 学習内容の到達目標 到達レベル 授業週 評価割合 試験 課題 相互評価 態度 発表 その他 合計 総合評価割合 100 0 0 0 0 0 100 100			13週	電力円線図と調相容量			, 受電電力, 損失電力, 相差角, 調相容量などが計算				
13週 電力用コフナフラとカロピラナライヤル の概要を理解し,説明できる。			14週	同期調相機:界磁電	—————————————————————————————————————			29. 同期調相機について界磁電流, V曲線, 電機子 反作用を理解し, 説明できる.			
モデルコアカリキュラムの学習内容と到達目標 分類 学習内容 学習内容の到達目標 到達レベル 授業週 評価割合 試験 課題 相互評価 態度 発表 その他 合計 総合評価割合 100 0 0 0 0 100			15週	電力用コンデンサと分路リアクトル			30. 電カ用コンデンサと分路リアクトルついて, その概要を理解し, 説明できる.				
分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週 評価割合 試験 課題 相互評価 態度 発表 その他 合計 総合評価割合 100 0 0 0 0 100		16週									
分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週 評価割合 試験 課題 相互評価 態度 発表 その他 合計 総合評価割合 100 0 0 0 0 100	モデルコ	モデルコアカリキュラムの学習内容と到達目標									
評価割合 試験 課題 相互評価 態度 発表 その他 合計 総合評価割合 100 0 0 0 0 100											
試験 課題 相互評価 態度 発表 その他 合計 総合評価割合 100 0 0 0 0 100	評価割合										
		試	験	課題	相互評価	態度	発表	その他	合計		
配点 100 0 0 0 0 0 100	総合評価割合 100		00	0	0	0	0	0	100		
	配点	10	00	0	0	0	0	0	100		